

Information Technology Master's Programs

MODULES HANDBOOK

Tel: +90 392 630 1245 E-mail: <u>sct.info@emu.edu.tr</u>

Web: Thesis Program and Non-thesis Program

CURRICULUM

Information Technology Master's Program (with Thesis)

21 Credits 120 ECTS							
Course Code	Ref. Code	Course Name	Credit	ECTS	Category	Prerequisites	
ITEC500	ITEC500	Master Thesis	(0,0,0) 0	60	AC	-	
ITEC598	ITEC598	Seminar	(0,0,0) 0	4	AC	-	
REQ1	REQ1	Area Elective I	(3,0,0) 3	8	AE	-	
REQ2	REQ2	Area Elective II	(3,0,0) 3	8	AE	-	
REQ3	REQ3	Area Elective III	(3,0,0) 3	8	AE	-	
REQ4	REQ4	Area Elective IV	(3,0,0) 3	8	AE	-	
REQ5	REQ5	Area Elective V	(3,0,0) 3	8	AE	-	
REQ6	REQ6	Area Elective VI	(3,0,0) 3	8	AE	-	
REQ7	REQ7	Area Elective VII	(3,0,0) 3	8	AE	-	

AC = Area Core AE = Area Elective

Information Technology Master's Program (without Thesis)

30 Credits								
	95 ECTS							
Course Code	Ref. Code	Course Name	Credit	ECTS	Category	Prerequisites		
ITEC511	3T5T1	IT Project Management	(3,0,0) 3	8	AC	-		
ITEC514	3T5T2	Research Methods and Ethics in Information Technology	(3,0,0) 3	8	AC	-		
REQ1	3T5T3	Area Elective I	(3,0,0) 3	8	AE	-		
REQ2	3T5T4	Area Elective II	(3,0,0) 3	8	AE	-		
REQ3	3T5T5	Area Elective III	(3,0,0) 3	8	AE	-		
ITEC521	3T5T6	Computer Networking Applications	(3,0,0) 3	8	AC	-		
ITEC513	3T5T7	Advanced Software Design and Development	(3,0,0) 3	8	AC	-		
REQ4	3T5T8	Area Elective IV	(3,0,0) 3	8	AE	-		
REQ5	3T5T9	Area Elective V	(3,0,0) 3	8	AE	-		
REQ6	3T5TA	Area Elective VI	(3,0,0) 3	8	AE	-		
ITEC599	3T5TP	Term Project	(0,0,0) 0	15	AC	-		
		A.C. A C	A.F. A					

AC = Area Core AE = Area Elective

EASTERN MEDITERRANEAN UNIVERSITY SCHOOL OF COMPUTING AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COURSE POLICY SHEET

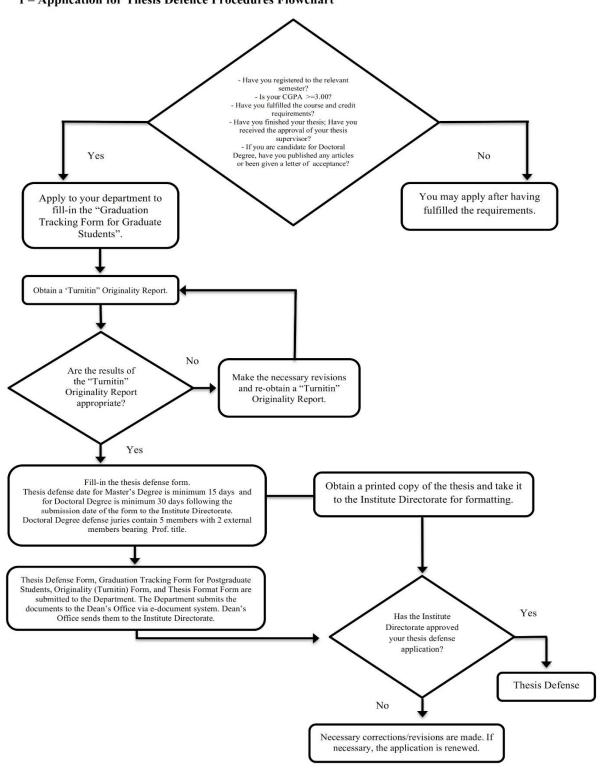
Course Title	Master Thesis
Course Code	ITEC500
Туре	Full Time
Semester	Fall/Spring
Category	Area Core
EMU Credit	(0,0,0) 0
Prerequisite	-
Language	English
Level	Graduate
Teaching Format	Weekly meetings with supervisor
ECTS Credit	60 What is ECTS? Why ECTS is needed? How does it work?
Workload	1800 Hours

List of Supervisors						
Name and Surname	E-mail	Office No	Office Tel			
Prof. Dr. Ahmet Rizaner	ahmet.rizaner@emu.edu.tr	CT112	+90 392 6302480			
Prof. Dr. Ali Hakan Ulusoy	alihakan.ulusoy@emu.edu.tr	CT118	+90 392 6302881			
Assoc. Prof. Dr. Emre Özen	emre.ozen@emu.edu.tr	CT102	+90 392 6301358			
Assoc. Prof. Dr. Nazife Dimililer	nazife.dimililer@emu.edu.tr	CT215	+90 392 6301034			
Asst. Prof. Dr. Akile Oday	akile.oday@emu.edu.tr	CT114	+90 392 6301183			
Asst. Prof. Dr. Alper Doğanalp	alper.doganalp@emu.edu.tr	CT204	+90 392 6301600			
Asst. Prof. Dr. Cem Yağlı	cem.yagli@emu.edu.tr	CT109	+90 392 6301137			
Asst. Prof. Dr. Hasan Oylum	hasan.oylum@emu.edu.tr	CT118	+90 392 6301671			
Asst. Prof. Dr. Hüsnü Bayramoğlu	husnu.bayramoglu@emu.edu.tr	CT103	+90 392 6302894			
Asst. Prof. Dr. Mustafa T. Babagil	mustafa.babagil@emu.edu.tr	CT116	+90 392 6302885			
Asst. Prof. Dr. Nilgün Suphi	nilgun.suphi@emu.edu.tr	CT105	+90 392 6301134			

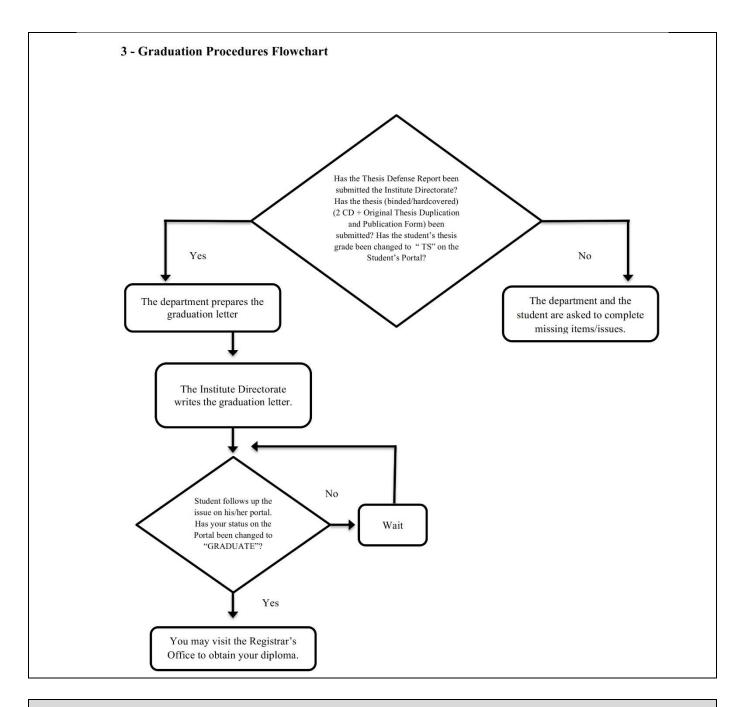
Course Description

A master's thesis has to be a unique piece of work, which includes evaluation or thorough analysis of a method.

Guidance for Thesis Defense


All procedures and related forms are available at the Institute of Graduate Studies and Research web site.

https://grad.emu.edu.tr/en


https://grad.emu.edu.tr/en/academic-issues/theses

https://grad.emu.edu.tr/en/academic-issues/forms

1 - Application for Thesis Defence Procedures Flowchart

2 - Post Thesis Defense Flowchart Thesis defense takes place. The jury informs the Institute Directorate about their decision by sending a "Thesis Defense Report". Decisions Repetition of the thesis defense. The Accept with Alterations. The application is submitted again. Defense is repeated. The duration following the revision period is 1 month for master and 3 months for doctoral thesis defense is three months for degree. master and 6 months for doctoral degree Accept Reject The department sends the graduation letter, Additional Grade Form or Grade Additional Grade Form or Grade Change Form for grade changes to the Institute Change Form for grade changes to the Institute Directorate via the e-document Directorate via the e-document system. system. Dismiss Obtain the printed copy of the thesis and apply to the Institute Directorate for the final format. Necessary corrections/revisions are Correct made. Obtain a hard covered /binded copy of the theses, obtain necessary signatures, 2 CDs → 3 copies of theses in Pdf format and with original wet signatures and fill in the Publication Form. Submit the relevant documents to the Institute Directorate for signature.

General Learning Outcomes

On successful completion of the project students should be able to:

- Summarize major themes in their area of specialization
- Identify areas where ethical issues may arise
- Act as expert and developer in their fields of speciality
- Understand the foundations of the chosen minor subject
- Have good skills in communications and proficiency in a language
- Select technologies, policies, and procedures to assure the confidentiality, integrity, and availability of information and IT systems

Teaching Methodology

- Students have weekly meetings with their supervisor.
- Supervisors direct the student to prepare the necessary materials for successful completion of the thesis study.
- All related forms are available on the graduate institute web site (http://grad.emu.edu.tr).

Course Title	IT Project Management
Course Code	ITEC511
Туре	Full Time
Semester	Fall/Spring
Category	Area Core
Workload	240 Hours
EMU Credit (Lec, Lab, Tut)	(3,0,0) 3
Prerequisite	-
Language	English
Level	Graduate
Teaching Format	3 Hours Lecture
ECTS Credit	8
Course Web Site	https://lms.emu.edu.tr

Instructors(s)	Assoc. Prof. Dr. Burak Erkut	Office Tel	2671
e-mail	Burak.Erkut@emu.edu.tr	Office No.	BE 165

Course Description

This course aims to provide a full understanding of the management roles, responsibilities and techniques needed in technology projects. The course also teaches how technology project management adopts as a computer system evolves from concept to implementation. All areas of the subject, including organization, work breakdown structure and scheduling, resources and project financing, project control and evaluation, management considerations, critical success factors and risk management will be discussed through the course.

General Learning Outcomes

On successful completion of this course students will have understanding of:

- Project management importance in all industries.
- Project manager's role and responsibilities.
- Tools and methods used in managing an IT project.
- Awareness of essential IT standards.
- Team management, monitoring and controlling of project tasks, communication, time and cost planning.

- Students will be assigned a case related to the lecture topics.
 - o Students are encouraged to use internet to search for more information.
 - The purpose of the case is to enable students apply their theoretical knowledge to a real-life case.
 - o Case report will be delivered in the specified format before the deadline.
 - o Case presentations will be done during the lecture.
- Final exam is conducted as a written exam.
- Make-up exam will be given after the final exams.

Text Book:

Innovation Project Management, Harold Kerzner.

Methods of IT Project Management, Jeffrey L. Brewer, Kevin C. Dittman

Resource Books:

- 1. IT Project Management, Sengage, Kathy Schwalde
- 2. Information Technology Project Management, 3rd Edition, John Wiley, Jack T. Marchewka
- 3. Information Systems Project Management, Pearson Prentice Hall, Mark A. Fuller Joseph S. Valacich Joey F. George

Lecture Notes:

All course materials are also available online in Adobe PDF (Portable Document Format).

	Weekly Schedule / Summary of Topics					
Week 1	Background					
(23.02.)						
Week 2	Project Initiation and Selection					
(02.03.)						
Week 3	Project Scheduling and Cost Planning					
(09.03.)						
Week 4	Project Quality Assurance					
(16.03.)						
Week 5	Project Risk Management Planning					
(23.03.)						
Week 6	Project Procurement Planning					
(30.03.)						
Week 7	Project Execution					
(06.04.)						
Week 8	Project Monitoring, Control and Closure					
(13.04.)						
Week 9 (20.04.)	From Traditional to Innovation Project Management					
Week 10	Innovation and Strategic Project Planning, Tools and Processes for Innovation Project					
(27.04.)	Management					
Week 11	Value-Based Innovation Project Management Metrics					
(04.05.)						
Week 12	Business Models and Disruptive Innovation					
(11.05.)						
Week 13	Innovation Roadblocks and Defining Innovation Project Success/Failure					
(18.05.)						
Week 14	Final Exam					
(25.05.)						

Rules and Obligations

- Each student can have only one make-up exam. One who misses an exam should provide a medical report within 3 days after the missed exam. The make-up exam will be organized at the end of the term after the finals and will cover all the topics. No make-up exam will be given for any assignment.
- Once the grades are announced, the students have only one week to do objection about their grades.
- It is the students' responsibility to follow the announcement in the course web site.
- Students who do not pass the course and fail to attend the lectures regularly may be given NG grade.

Background Requirements

Students are expected to be enrolled in Master's program.

• Students who lack an official proof (such as undergraduate transcript) of the required academic background must acquire a written permission from the course instructor for registering the course.

Method of Assessment						
Evaluation and Grading	Attendance / Active Participation	Project / Presentation	Final Exam			
Percentage	20 %	40%	40%			

Grading Criteria *											
Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
90 - 100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 - 39

^{*} Letter grades will be decided after calculating the class average at the end of the semester and distribution of the grades will play a significant role in the evaluation.

Course Title	Principles of Programming Languages
Course Code	ITEC512
Туре	Full Time
Semester	Fall/Spring
Category	Area Elective
Workload	240 Hours
EMU Credit	(3,0,0) 3
Prerequisite	-
Language	English
Level	Graduate
Teaching Format	3 Hours Lecture
ECTS Credit	8
Course Web Site	http:// lms.emu.edu.tr

Instructor(s)	Asst. Prof. Dr. Hasan Oylum	Office Tel	+90 392 6301447
E-mail	hasan.oylum@emu.edu.tr	Office No	CT 204

Course Description

This course aims to introduce students to the key concepts of the software development fundamentals of programming languages. The types of programming languages including samples and the areas which they are most effective today, are going to be taught in the course. The content of the course is designed to give enough experience to the students to understand the similarities and the difference of the programming languages which are actively used today, and to select the most appropriate programming language - development environment for a specific need - project.

General Learning Outcomes

On successful completion of this course students should be able to:

- Understand the syntax and semantics used in the development of programming languages.
- Differentiate the similarities and differences between different programming languages.
- Develop the solutions to real life problems using different programming languages.
- Interpret and modify program modules in different programming languages.
- Describe the significance of implementation.
- Adapt to the new languages.
- Express their ideas in terms of programming.
- Select the appropriate languages for a given problem.
- Use different programming languages.
- Understand the syntax and semantics of the programming languages.

- The course has three hours of lectures in a week.
- Class attendance is compulsory.
- Only one make-up exam will be given for the missing exams.
- Make-up exam will be given after the final exams.
- No make-up will be given for the project.
- Students are supposed to submit the assigned tasks on time.
- Home Page, http://sct.emu.edu.tr/oylum must frequently be visited for the course announcements, projects, etc.

Text Book:

1. Robert W. Sebesta, Concepts of Programming Languages, 10th Edition, ISBN: 978-0-273-76910-1, Pearson Education, 2013.

Resource Books:

- Allen B. Tucker, Robert E. Noonan, Programming Languages, Principles and Paradigms, Second Edition, McGraw-Hill. 2007.
- 2. Jan Skansholm, ADA 95 from the Beginning, Third Edition, Addison-Wesley, 1997.
- 3. C. Thomas Wu, an Introduction to OOP with Java, Second Edition, McGraw-Hill, 2001.

Lecture Notes:

Lecture notes are available on the course web site http://sct.emu.edu.tr/oylum (follow the button link for ITEC512)

	Weekly Schedule / Summary of Topics			
Week 1	Introduction: Concepts of programming languages			
Week 2	Evolution of the programming languages			
Week 3-4	Lexical, syntax and semantics analysis			
Week 5-7	Primary Constructs of Imperative Languages: Characteristics of Variables. (1 week) Data Types (1 week) Expressions, Assignment and Control Statements. (1 week)			
Week 7-8	Midterm Examinations			
Week 9-10	Primary Constructs of Imperative Languages: Subprograms and Their Implementation. (1 week) Data Abstraction Facilities. (1 week)			
Week 11	Object Oriented Programming Languages			
Week 12	Functional Programming Languages			
Week 13	Logical Programming Languages			
Week 14-15	Final Examinations			

Requirements

- Each student can have only one make-up exam. One who misses an exam should provide a medical report within 3 days after the missed exam. The make-up exam will be organized at the end of the term after the finals and will cover all the topics. No make-up exam will be given for any quiz or assignment.
- Once the grades are announced, the students have only one week to do objection about their grades.
- It is the students' responsibility to follow the announcement in the course web site.
- Students who do not pass the course and fail to attend the lectures regularly may be given NG grade.

	Method of Assessment							
Evaluation and Grading	Project/Assigment	Midterm Exam	Final Exam					
Percentage	35 %	30 %	35 %					

Grading Criteria *											
Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
90 - 100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 - 39

^{*} Letter grades will be decided after calculating the class average at the end of the semester and distribution of the grades will play a significant role in the evaluation.

Course Title	Advanced Software Design and Development
Course Code	ITEC513
Туре	Full Time
Semester	Spring
Category	Area Core
EMU Credit	(3,0,0) 3
Prerequisite	-
Language	English
Level	Graduate
Teaching Format	3 Hours of lecture per week
ECTS Credit	8
Workload	240 Hours
Course Web Site	http://lms.emu.edu.tr

Instructor(s)	Assoc. Prof. Dr. Nazife Dimililer	Office Tel	+90 392 6301034	
E-mail	nazife.dimililer@emu.edu.tr	Office No	CT215	

Course Description

This course explores the practice as well as research in the field of software design and development. It builds on the knowledge and skills learnt in undergraduate Software Design and Development course. The complete software design and development cycle is covered with latest methodologies and techniques including concepts such as change control, process management, and software development and testing.

General Learning Outcomes

On successful completion of this course students should be able to:

- Discuss and explain central concepts and principles within selected software engineering topics.
- Discuss current research within the selected software engineering topics.
- Identify relevant research literature for the selected software engineering topics
- Work in a software development team of a realistic size
- Build a software product using software engineering principles and procedures to.

- The course has three hours of lectures in a week mainly held in the form of a seminar.
- This course will be an in-depth examination of the SWE concepts.
- The students will read the material posted on course website prior to class. Class participation, discussion of the readings and presentation of a research topic shall play a major role in the final grade.
- Teams of 4-5 students will work on small software design and development projects. There will be two presentations
 for the project. The first presentation will be performed when Design is completed. The final working product will be
 presented and demonstrated at the end of the term. All students in the team will participate in the presentation.
 Students will get individual marks for the presentation and questions answered during presentation.
- In addition to the lectures, we will read and discuss various related research papers.
- There will be one written exam in this course. The written exam mark, class participation, team project and research paper will be used in determining the final grade.
- Course related materials will be posted on the course web site

Books Used:

Roger S Pressman, Bruce R. Maxim, Software Engineering: A Practitioner's Approach, 8/e, McGrawHill 2015

ISBN: 0078022126

Hans van Vliet, Software Engineering: Principles and Practice, 3rd Edition, Wiley 2008

ISBN: 9780470031469

Ian Sommerville, Software Engineering, 10th Edition, Pearson 2016

ISBN-13: 9780133943030

Lecture Notes:

Lecture notes are available on the course web site.

	Weekly Schedule / Summary of Topics
Week 1-3	Intro to Software Design and Development methodologies/Software Lifecycle, Agile Approach
Week 4	Requirements Engineering
Week 5	Software Architecture
Week 6	UI Design, People and Team Management
Week 7-8	Verification/Validation, Testing Strategies
Week 9	Maintenance and Reengineering
Week 10	Component Based Software Engineering
Week 11	Service-Orientation and Cloud Computing
Week 12	Search Based Software Engineering
Week 13	Aspect-oriented Software Development
Week 14	Configuration Management
Week 15	Project presentations
Week 16-18	Exam Week

Requirements

- Only one comprehensive make-up exam is available to the students at the end of the term. Make-up exam will be provided only to students with valid excuses (family emergency, illness, university-scheduled activities, etc.). The excuse must be submitted to the course instructor/department no later than 3-days after the missed exam.
- No make-up exam will be given for any quiz or assignment.
- Once the grades are announced, the students may object to their grades within one-week.
- Students are expected to check the announcements on the course web site regularly.
- Students who do not pass the course and fail to attend the lectures regularly may be given NG grade according to the EMU regulations

Evaluation and Grading	Term Project	Midterm Exam	Survey-Paper	Class Participation	Final Exam
Percentage	20 %	30 %	10 %	10 %	30 %

Grading Criteria *											
Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
90 -100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 – 39

^{*} Letter grades will be decided upon after calculating the averages at the end of the semester and distribution of the averages will play a significant role in the evaluation of the letter grades.

Course Title	Research Methods and Ethics in Information Technology
Course Code	ITEC514
Туре	Full Time
Semester	Fall/Spring
Category	Area Core
Workload	240 Hours
EMU Credit	(3,0,0) 3
Prerequisite	-
Language	English
Level	Graduate
Teaching Format	3 Hour Lecture
ECTS Credit	8
Workload	240 hours
Course Web Site	http://lms.emu.edu.tr

Instructor(s)	Asst. Prof. Dr. Nilgün Suphi	Office Tel	+90 392 630 1134	
E-mail	nilgun.suphi@emu.edu.tr	Office No	CT105	

Course Description

Participants will learn the steps of conducting a research within the context of Information Technology. Research process starting from the formalization of a problem, review of literature, theorizing, methodologies like qualitative, quantitative and mixed method approaches will be discussed. Writing strategies, co-authorship and role of ethics in research will also be among the topics covered.

General Learning Outcomes

On successful completion of this course students should be able to:

- know the true nature of research in academic settings,
- know how to choose and refine a research problem,
- conduct a literature review and understand how it can serve during the planning of a research project,
- compare quantitative and qualitative research methods,
- explain internal and external validity of a research,
- know how to manage ethical issues related to protection from harm, voluntary and informed participation, right to privacy, and honesty with professional colleagues,
- describe general characteristics and purposes of observation studies, correlational research, development designs and survey research,
- understand and recognize the examples of Experimental, Quasi-Experimental and Ex-post Facto designs,
- identify situations in which mixed-methods designs are especially useful,
- describe common sources of biases in a research,
- plan and prepare a final research report.

Teaching Methodology/Classroom Procedures

- The course has three hours of lectures a week.
- Class attendance is compulsory.
- Only one make-up exam will be given for the missing exams.
- Make-up exam will be given after the final exams.
- No make-up will be given for the project.
- Students are required to submit the assigned tasks on time.
- Course related materials will be posted on the course web site.
- The topics will be presented by the instructor, this will be followed by class discussion.
- Students will work on individual projects. I.e. they will do research on a selected topic, write a paper on their topic and present this in class while strictly following the rules discussed during the semester.
- Students will work on individual projects: term project proposals will be prepared for ITEC599.

Course Materials / Main References

Text Book:

Paul D. Leedy, Jeanne Ellis Ormrod, "Practical Research Planning and Design" 11th edition, Pearson Education, 2015. ISBN: 978-1-292-07689-8

Kenneth S. Bordens, Bruce B. Abbott, "Research Design and Methods A Process Approach", 9th edition, McGraw-hill Education, 2014. ISBN: 978-0-07-8035456

Reference Books:

Gate T. Wang, Keumjae Park, "Research and Report Writing: From topic selection to the complete paper", John Wiley & Sons, 2016. ISBN:978-111-8963913

James D. Lester, "Writing Research Papers A Complete Guide", 15th edition, Pearson Education, 2016. ISBN:978-1-292-07689-8

Sharon M. Ravitch, Nicole M. Carl, "Qualitative Research Bridging The Conceptual, Theoretical and Methodological", Sage Publication, 2016. ISBN:978-1-4833-5174-2

	Weekly Schedule/Summary of Topics							
Week 1	What research is, philosophical assumptions underlying research methodologies and research tools. (Assignment No. 1)							
Week 2	Finding a research project, identifying and describing the research problem, dividing the research problem into sub-problems. (Assignment No. 2)							
Week 3	How to prepare for, organize and write a literature review, understanding when to quit. (Assign.No.3)							
Week 4	Planning your research project, comparing quantitative & qualitative methodologies. Validity of each method.							
Week 5	Planning your research project, comparing quantitative & qualitative methodologies. Validity of each method							
Week 6	Writing your proposal. (Assignment No. 4 and Assignment No. 5)							
Week 7	Ethical issues in research							
Week 8-9	Midterm examinations week							
Week 10	Descriptive Quantitative Research							
Week 11	Descriptive Quantitative Research							
Week 12	Experimental, quasi-experimental and ex post facto designs							
Week 13	Qualitative research methods							
Week 14	Planning and preparing a final research report.							
Week 15	Final Proposals - Feedback							
Week 16-18	Final Examinations							
	Requirements							

- Each student can have only one make-up exam. Any student who misses an exam must provide a medical report within 3 days after the missed exam. The make-up exam will be organized to be at the end of the term after the finals and will cover all the topics. No make-up exam will be given for any assignments.
- Once the grades are announced, the students have only one week make an objection about their grades.
- It is the students' responsibility to follow the announcement in the course web site.
- Students who do not pass the course and fail to attend the lectures regularly may be given NG grade.

		Method of Assessment							
Evaluation and Grading	Assignments	Project	Midterm Exam	Final Exam					
Percentage	30 %	30%	-	40 %					

	Grading Criteria											
	Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
ć	90 -100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 – 39

EASTERN MEDITERRANEAN UNIVERSITY SCHOOL OF COMPUTING AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COURSE POLICY SHEET

Course Title	Computer Networking Applications
Course Code	ITEC521
Туре	Full Time
Semester	Spring
Category	Area Core
EMU Credit	(3,0,0) 3
Prerequisite	-
Language	English
Level	Graduate
Teaching Format	3 Hours of Lectures per week
ECTS Credit	8 What is ECTS? Why ECTS is needed? How does it work?
Workload	240 Hours
Course Web Site	http://lms.emu.edu.tr

Instructor	Assist. Prof. Dr. Hüsnü Bayramoğlu	Office Tel	+90 392 6302894
E-mail	husnu.bayramoglu@emu.edu.tr	Office No	CT 103

Course Description

The main aim of this course is to familiarize students with advanced topics on the newest wired networking technologies with a special emphasis on networking applications. It provides an in-depth introduction to a wide range of topics in the field of computer networks including the Internet. Rather than explain how protocols work in the abstract, the most important protocols are defined to discuss how networks work in practice. This allows to include real-world experiences in the discussion. Topics covered include network protocols, Internet routing, peer to peer networks, network security, congestion control, error detection & correction, and internetworking. It focuses both on the existing technologies and new trends or changes in fundamentals, to derive a set of requirements that a useful network must meet.

General Learning Outcomes

On successful completion of this course, students will be able to:

- explain fundamentals of network protocols and architectures
- discuss the most important protocols used in Internet today
- discuss various types of applications layer protocols for most used applications
- explain reliable data transfer over packet switched networks
- explain how error and flow control is implemented in Internet today
- discuss the use of Internet Protocol as the delivery mechanism at the network layer
- list different techniques to detect transmission errors
- explain the layered architecture behind the Internet
- explain how data is encoded and transmitted on a physical link
- explain the security issues, network vulnerabilities and security measures

- The course has three hours of lectures per week.
- There are no lab works or tutorials.
- There is one midterm exam and one final exam.
- Chapters included in the exams will be posted on the course web site during the semester.
- There is an individual term project.
 - You should find a recent conference/journal paper, published in the last 3 years, related to Computer Networking Applications.

- o The selected paper should be sent as an e-mail to husnu.bayramoglu@emu.edu.tr for confirmation.
- o Once the topic is confirmed, you can start studying on the topic, do research and prepare a report.
- o The report should be between 3500-4000 words with the format provided on the course web site.
- o Turnitin plagiarism test result must be obtained before the final submission.
- o An account will be created for you to make the plagiarism test through Turnitin.
- o The plagiarism test result must be less than 20%.
- o No reports are accepted for grading with higher plagiarism test results.
- The deadline for submitting the report will be posted on the course web site.
- Late submissions will not be accepted.
- o Project grade is out of 20%.
- o The work done for the project should be presented according to the schedule posted on the course web site.
- o The duration of the presentation is about 10-15 minutes for each student.
- o Presentation grade is out of 10%.
- Class attendance is compulsory.
- Lecture notes are available on the course web site.

Text Book:

James F. Kurose and Keith W. Ross., Computer Networking: A Top-Down Approach, 7th Ed. (2016), Pearson, ISBN: 978-0133594140.

	Weekly Schedule / Summary of Topic
Week 1	Overview on Computer Networks: The Network Edge, The Network Core, Delay, Loss, and Throughput in Packet-Switched Networks
Week 2	Application Layer: The Web and HTTP, FTP, SMTP, DNS, Peer-to-Peer Applications
Week 3	Transport Layer: Multiplexing and Demultiplexing, UDP, TCP, SCTP, Congestion Control
Week 4-5	Network Layer: Virtual Circuit and Datagram Networks, Forwarding and Routing, IPv4, IPv6, Inside a Router
Week 6-7	Network Layer: Routing Algorithms, OSPF, BGP, ICMP, Multicast Routing, DHCP
Week 8-9	Midterm Examinations
Week 10-11	The Link Layer: Error Detection and Correction Techniques, Multiple Access Links and Protocols, Link Layer Addressing and ARP
Week 12	Security in Computer Networks: Principles of Cryptography, VPN, Securing E-mails, Securing TCP Connections: SSL, Securing Wireless LANs: WEP
Week 13	Multimedia Networking: Streaming Stored Video, Voice-Over-IP, RTP, RTCP, Policing and QoS guarantees, Scheduling
Week 14-15	Term Project Presentations
Week 16-17	Final Examinations

Rules and Obligations

- Each student can have only one make-up exam.
- One who misses an exam should provide a medical report within 3 days after the missed exam.
- The make-up exam will be organized at the end of the term after the finals and covers all the topics.
- Once the grades are announced, the students have only one week to do objection about their grades.
- Students who fail to attend the lectures regularly may be given NG grade.
- The student is responsible to check the course web site regularly and view the latest announcements.

Background Requirements

- Students are expected to have a networking background at minimum undergraduate level for registering the course.
- Students who lack an official proof (such as undergraduate transcript) of the required academic background must acquire a written permission from the course instructor for registering the course.

Method of Assessment							
Evaluation and Grading Term Project Midterm Exam Final Exam							
Percentage	30 %	35 %	35 %				

Grading Criteria *											
Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
90 - 100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 - 39

^{*} Letter grades will be decided after calculating the class average at the end of the semester and distribution of the grades will play a significant role in the evaluation.

Course Title	Computer Security and Cryptography
Course Code	ITEC540
Туре	Full Time
Semester	Fall/Spring
Category	Area Elective
Workload	240 Hours
EMU Credit	(3,0,0) 3
Prerequisite	-
Language	English
Level	Graduate
Teaching Format	3 Hours Lecture per week
ECTS Credit	8
Course Web Site	http://lms.emu.edu.tr/ITEC540

Instructor(s)	uctor(s) Asst.Prof.Dr. Mustafa T. Babagil		+90 392 6302885
E-mail	mustafa.babagil@emu.edu.tr	Office No	CT116

Course Description

The course introduces fundamental principles and concepts in computer security and teaches cryptography as a leveraging tool for building secure computer systems. Topics on cryptography include simple ciphers, both symmetric and asymmetric encryption, hash functions, message authentication codes and digital signatures. Other main computer security issues such as authentication, access control, operating system security and secure programming are also given. Security standards are briefly presented.

General Learning Outcomes

On successful completion of this course students should be able to:

- Discuss and explain meaning of secure computer systems.
- Discuss and learn how cryptography is effective on secure computer systems.
- Explain both symmetric and asymmetric encryption, hash functions.
- Understand message authentication codes and digital signatures.
- Understand main computer security issues such as authentication, access control, operating system security and secure programming briefly.
- Explain briefly the Security standards.

Teaching Methodology / Classroom Procedures

- The course has three hours of lectures in a week mainly held in the form of a seminar.
- The students will read the material posted on course website prior to class. Class participation, discussion of the readings and presentation of a research topic shall play a major role in the final grade.
- Students will have a presentation subject related on cryptography or computer security.
- Each student will choose a research topic in the field of cryptography and write a survey-paper on the topic.
- There will be one written exam in this course. The written exam mark, class participation, team project and research paper will be used in determining the final grade.
- Course related materials will be posted on the course web site (http://lms.emu.edu.tr/ITEC540

Course Materials / Main References

Books Used:

Cryptography and Network Security, William Stallings, 6th Edition, Pearson Education, 2013.

Lecture Notes:

Lecture notes are available on the course web site.

	Weekly Schedule / Summary of Topics
Week 1	Fundamental concepts in computer security
Week 2	Computer and Network Security-Part 1
Week 3	Introduction to terminology.
Week 4	Cryptography
Week 5	Classical Encryption techniques - Substitution Techniques
Week 6	Caesar cipher (or) shift cipher - Playfair cipher Vigenere cipher - One Time Pad Cipher definition
Week 7	Transposition Techniques -Row Transposition Technique
Week 8-9	Midterm Exams weeks
Week 10	Feistel cipher structure - Block cipher principles
Week 11	Computer security - authentication, access control briefly
Week 12	Computer Security - operating system security and secure programming briefly
Week 13	Hash Functions definition
Week 14	Presentations and submissions of Term Project
Week 15	Presentations and submissions of Term Project
Week 16-18	Exam Week

Requirements

- Each student can have only one make-up exam. One who misses an exam should provide a medical report within 3 days after the missed exam.
- The make-up exam will be organized at the end of the term after the finals and will cover all the topics.
- No make-up exam will be given for any quiz or assignment.
- Once the grades are announced, the students have only one week to do objection about their grades.
- It is the students' responsibility to follow the announcement in the course web site.
- Students who do not pass the course and fail to attend the lectures regularly may be given NG grade.

Evaluation and Grading	**Term Project	**Term Project Home Works Class Participation				
Percentage	10+10+10 = 30 %	20 %	10 %	40 %		

Grading Criteria *											
Α	A A- B+ B B- C+ C C- D+ D D- F										
90 -100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 – 39

^{*} Letter grades will be decided upon after calculating the averages at the end of the semester and distribution of the averages will play a significant role in the evaluation of the letter grades.

^{**} Term project will have to be submitted as a <u>REPORT word document</u> + <u>PRESENTATION file (power point)</u> + <u>PRESENTATION in class.</u>

EASTERN MEDITERRANEAN UNIVERSITY SCHOOL OF COMPUTING AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COURSE POLICY SHEET

Course Title	Information Technology and Instruction			
Course Code	ITEC542			
Туре	Full Time			
Semester	Spring			
Category	Area Elective			
EMU Credit	(3,0,0) 3			
Prerequisite	-			
Language	English			
Level	Postgraduate			
Teaching Format	3 Hours of Lectures per week			
ECTS Credit	8			
Workload	240 Hours			
Course Web Site	http://lms.emu.edu.tr			

Instructor	Assist. Prof. Dr. Bengi Sonyel	Office Tel	+90 392 6302390
E-mail	bengi.sonyel@emu.edu.tr	Office No	EF 224

Course Description

Basic concepts related to instruction, principles of learning and instruction, the importance and utilities of planned steps in instruction, planning instruction (yearly, weekly lesson plans), learning and instruction strategies, instructional methods and techniques, making a linkage between these methods, techniques and the practice, instructional materials, the roles and responsibilities of the teachers in enhancing the quality of instruction, competencies of teacher in relation with instructional design and information technology; introducing instructional technology, application of instructional technology; evaluation of instructional technology; designing and implementation of instructional materials.

General Learning Outcomes

On successful completion of this course, students will be able to:

- Identify with the basic concepts related to instruction.
- Identify with the principles of learning and instruction, instructional strategies, methods, and techniques.
- Identify with the cognitive and behavioural approaches to teaching
- Name some important cognitive and behavioural approaches to teaching in instructional technology
- Discuss the purposes, characteristics, advantages and limitations of instructional methods, strategies, and techniques.
- Compare the purposes, characteristics, advantages and limitations of instructional methods, strategies and techniques in instructional technology
- Evaluate the purposes, characteristics, advantages and limitations of instructional methods, strategies, and techniques.
- Develop a personal and individualized understanding towards instructional approaches, methods techniques, and strategies in instructional technology and teaching.

Teaching Methodology / Classroom Procedures

Active involvement in each session is of utmost importance for getting optimum benefit from the course. Getting prepared in advance will enable the students to understand and digest the key issues and motivate their active involvement for getting full credit. In each session students are asked to discuss and reflect upon the topic which will be covered first in groups of four and then reflect their views along with the theoretical information from the book. Therefore, to come to the class prepared is very significant to digest the key issues and contribute to the group works in class. Furthermore, students will have presentation on the Assure Model in groups of 4/5. Each student will be assessed both individually and as a group.

Students are also expected to complete an online task regarding "Online Learning" in groups of 4/5 and then evaluate each other's group work and reflect upon it. The instructor will guide students at each stage of their tasks.

Course Materials / Main References

Text Book:

Instructional Technology and Media for Learning (12th edt) (2021) Smaldino, S.E.; Russell J.D.; Heinich, R. and Molenda, M. Prentice Hall, Inc. A Simon & Schuster Company, Englewood Cliffs, New Jersey.

	Weekly Schedule / Summary of Topic					
Week 1	ek 1 Meeting the students and overview of the course and Introduction to the basic concepts related to instruction					
Week 2	Technology, Media, and Learning					
Week 3	Instructional Systems					
Week 4-5	The Assure Model: Creating the Learning Experience					
Week 6-7	The Assure Model: Creating the Learning Experience					
Week 8-9	Mid-term Examination					
Week 10-11	Visual Principles					
Week 12	Online Learning					
Week 13	Online Learning					
Week 14-15	Instructional Materials and Displays					
Week 16-17	Final Exam Week					

Rules and Obligations

For theoretical courses the required participation is 70% and for practical courses 80% students below these ranges will be given NG. Students who take NG are not allowed to sit for final and re-sit exams. Health reports are not valid for attendance.

Background Requirements

- Read about the subject that will be studied in class before coming to class,
- Participate actively in the discussions and tasks,
- Attend at least 80% of class hours in the semester.

		Method of Assessment					
Evaluation and Grading	Assure Model Group work & Presentation	I IVIId		Midterm Exam	Final Exam		
Percentage	15 %	15%	10%	25 %	35 %		

	Grading Criteria *										
Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
90 - 100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 - 39

^{*} Letter grades will be decided after calculating the class average at the end of the semester and distribution of the grades will play a significant role in the evaluation.

Course Title	Data Gathering & Recovery In Computer Systems		
Course Code	ITEC543		
Туре	Full Time		
Semester	Fall/Spring		
Category	Area Elective		
Workload	240 Hours		
EMU Credit	(3,0,0) 3		
Prerequisite	-		
Language	English		
Level	Graduate		
Teaching Format	3 Hours Lecture per week		
ECTS Credit 8			
Course Web Site	http://staff.emu.edu.tr/husnubayramoglu		

Instructor(s) Asst.Prof.Dr. Hüsnü Bayramoğlu		Office Tel	+90 392 6302894
E-mail	husnu.bayramoglu@emu.edu.tr	Office No	CT100

Course Description

Data gathering and recovery in computer systems often involves a process of search and discovery of data. The process of search and discovery involves the analysis of data storage and communication systems. The analysis of data storage includes the retrieve of the deleted data in computer systems and constructs evidences of past actions.

Good backup and recovery strategies are key to the health of any organization. Designing realistic recovery solutions is very important. Medium- to very-large-scale systems administrators have to protect large amounts of critical data as well as design backup solutions that are scalable and optimized to meet changing conditions. The main of this course focuses on the implementation of 21st century architectures that provides the framework for meeting the requirements of data protection for the organization.

Continuous data protection and remote replication strategies are also addressed as they are integrated within backup strategies.

General Learning Outcomes

On successful completion of this course students should be able to:

- Describe the elements of a backup environment and applications of those elements
- Discuss new technologies within the backup technology area and their impact on design
- Identify combinations of both hardware and software configurations that are scalable from small to large environments
- Discuss designs that address physical and virtual backup environments
- Describe new media technologies
- Report requirements that will assist in maintaining application backup strategies
- Identify sample backup environments
- Have the necessary knowledge of related research literature

Teaching Methodology / Classroom Procedures

• The course has three hours of lectures in a week mainly held in the form of a seminar.

- There is no lab works or tutorials.
- There will be one written midterm exam and one written final exam.
- The exams are conducted as a written exam that may contain multiple choice, fill in the blanks, short answer and writing essay questions.
- There is an individual term project.
 - You should find a recent conference/journal paper (published in the last 5 years) related to Data Backup and Recovery in Computer Systems.
 - The selected paper should be sent as an e-mail to husnu.bayramoglu@emu.edu.tr and wait for the confirmation.
 - Once the topic is confirmed, you can start studying the topic and prepare a written report.
 - The printed report should be submitted before the announced deadline.
 - Late submissions will not be accepted.
 - Project grade is out of 20%.
 - The report should be between 3500-4000 words with the format provided in the report template on the web site.
 - o Turnitin plagiarism test must be obtained before submission.
 - The plagiarism test result should be less than 20%.
 - No reports will be accepted for consideration with higher plagiarism test result.
 - An account will be created for you to make the plagiarism test through Turnitin.
 - The work done for the project should be presented.
 - The duration will be about 15 minutes for each student.
 - Presentation grade is out of 10%.
- Class attendance is compulsory.
- Course related materials will be posted on the course web site.

Text Book:

Steven Nelson, Pro Data Backup and Recovery-Expert's Voice in Data Management, Apress, 2011,

ISBN-13: 978-1430226628

Lecture Notes:

Lecture notes are available on the course web site in PDF format.

	Weekly Schedule / Summary of Topics						
Week 1	Distinction Between Backup and Archive						
Week 2	Backup Softwares: Commvault Simpana and Symantec BackupBackup						
Week 3	Physical Backup Media: Tape Characteristics, RAID Implementations, Network Attached Storage						
Week 4	Virtual Backup Media: Virtual Tape Libraries, Storage Virtualization						
Week 5	New Media Technologies: Deduplication Techniques, Continuous Remote Replication, Cloud Storage						
Week 6	Storage Policies for CommVault Simpana						
Week 7-8	Midterm Exams						
Week 9	Storage Policies for Symantec NetBackup						
Week 10-11	Application Backup Strategies: File systems, Databases, Mail Servers						
Week 12	Putting It All Together: Sample Backup Environments						
Week 13	Remote Office Deployments						
Week 14	Presentations for Term Projects						
Week 15	Presentations for Term Projects						
Week 16-18	Final Examinations						

Rules and Obligations

- Each student can have only one make-up exam. One who misses an exam should provide a medical report within 3 days after the missed exam.
- The make-up exam will be organized at the end of the term after the finals and will cover all the topics.
- No make-up exam will be given for any quiz or assignment.
- Once the grades are announced, the students have only one week to do objection about their grades.
- It is the students' responsibility to follow the announcement in the course web site.
- Students who do not pass the course and fail to attend the lectures regularly may be given NG grade.

Background Requirements

- Students are expected to have a basic computer hardware/software knowledge at minimum undergraduate level for registering the course.
- Students who lack an official proof (such as undergraduate transcript) of the required academic background must acquire a written permission from the course instructor for registering the course.

	Method of Assessment					
Evaluation and Grading	Term Project Midterm Exam Final Exam					
Percentage	30 %	30 %	40 %			

	Grading Criteria *										
Α	A A- B+ B B- C+ C C- D+ D D- F							F			
90 -100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 – 39

^{*} Letter grades will be decided upon after calculating the averages at the end of the semester and distribution of the averages will play a significant role in the evaluation of the letter grades.

Course Title	Text Mining		
Course Code	ITEC547		
Туре	Full Time		
Semester	Fall/Spring		
Category	Area Elective		
Workload	240 Hours		
EMU Credit	(3,0,0) 3		
Prerequisite	-		
Language	English		
Level	Graduate		
Teaching Format	3 Hours Lecture		
ECTS Credit	8		
Course Web Site	http:// staff.emu.edu.tr/nazife.dimililer/itec547		

Instructor(s)	Assoc.Prof.Dr. Nazife Dimililer	Office Tel	+90 392 6301034
E-mail	nazife.dimililer@emu.edu.tr	Office No	CT215

Course Description

This course presents a discussion of the development of NLP applications in the text mining/information extraction area from theoretical and practical perspectives. Machine learning architectures are applied to NLP text to mine required information. Topics discussed include overview of the nature of unstructured and semi-structured text, text classification, feature extraction, feature selection, evaluation of classification, tokenization, stemming, lemmatization, parsing, derivation of linguistic features, text categorization, text clustering, concept /entity extraction, sentiment analysis, document summarization, question answering. Machine language algorithms, probabilistic models, rule based models.

General Learning Outcomes

On successful completion of this course students should be able to:

- Describe need and use for text mining
- Discuss the current text mining approaches and applications
- Design and implement text mining applications

- The course has three hours of lectures in a week.
- Topics will be covered during lecture hours.
- Research papers will be assigned as reading assignments and students are expected to read the papers and participate in discussions on these papers.
- One individual project will be assigned to each student to implement a small scale text mining solution based on a published research paper. The student will write a short report on the results and compare with published work. The results will be presented in class.
- Class attendance is compulsory.
- Both midterm and Final exam will be classical type.
- Assignments will mainly focus on writing text processing/cleansing programs.
- Only one make-up exam will be given for the missing exams.
- Make-up exam will be given after the final exams. No make-up will be given for the project.

- Students are supposed to submit the assigned tasks on time.
- Course related materials will be posted on the course web site (http://staff.emu.edu.tr/nazife.dimililer/itec582).

This course does not use a traditional textbook. Instead, you will be reading from different websites, articles and e-books. The following books will be utilized throughout the semester

- 1. Data Mining, Iam H. Witten, Eibe Frank, Mark A. Hall, Morgan Kaufman
- 2. Modern Information Retrieval, Ricardo Baeza-Yates, Berthier Riberio-Neto, Addison-Wesley
- 3. Introduction to Information Retrieval by Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze . (available online).
- 4. Text Mining: Applications and Theory, M. W. Berry, J. Kogan, Wiley Press (e-book available)
- 5. Survey of Text Mining, Clustering, Classification, and Retrieval, Michael W. Berry (editor), Springer
- 6. Speech and Language Processing, DANIEL Jurafsky, James H. Martin, Prentice Hall

Lecture Notes:

Lecture notes are available on the course web site.

Weekly Schedule / Summary of Topics						
Week 1	Introduction, Overview of KDD, Data Mining, Text Mining, Natural Language Processing, Machine Learning.					
Week 2-3	Week 2-3 Exploring Text: tokenization, stemming, base words, patterns in Words and Letters, word-meaning, indexing document text					
Week 4-5	Week 4-5 Markov Models and POS tagging: HMM, POS taggers					
Week 6-7	Week 6-7 Machine learning					
Week 8	Information Extraction					
Week 9	Search Engines, Searching the Web					
Week 10-11	Clustering Documents; Clustering Partitioning, Hierarchical, Agglomerative, Divisive, Grid based, Model based					
Week 12	Text categorization/spam filtering					
Week 13-14	Summarization , Question and Answer					
Week 15-17	Selected topics/Paper discussion (Paper Discussion will be scheduled after Machine learning topics according to the main subject of the selected papers)					
Week 18	Project Presentations					

Requirements

- Each student can have only one make-up exam. One who misses an exam should provide a medical report within 3 days after the missed exam. The make-up exam will be organized at the end of the term after the finals and will cover all the topics. No make-up exam will be given for any quiz or assignment.
- Once the grades are announced, the students have only one week to do objection about their grades.
- It is the students' responsibility to follow the announcement in the course web site.
- Students who do not pass the course and fail to attend the lectures regularly may be given NG grade.

Background Requirements

 Students are expected to have minimum undergraduate level programming background preferably in python

	Method of Assessment						
Evaluation and Grading	Assignments Project/Presentation Midterm Exam Final Exam						
Percentage	10%	25 %	30 %	35 %			

Grading Criteria *											
Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
90 - 100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 - 39

^{*} Letter grades will be decided after calculating the class average at the end of the semester and distribution of the grades will play a significant role in the evaluation.

EASTERN MEDITERRANEAN UNIVERSITY SCHOOL OF COMPUTING AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COURSE POLICY SHEET

Course Title	Computer Based Forecasting Related Data Analysis
Course Code	ITEC548
Туре	Full Time
Semester	Fall/Spring
Category	Area Elective
Workload	240 Hours
EMU Credit	(3,0,0) 3
Prerequisite	-
Language	English
Level	Graduate
Teaching Format	3 Hours Lecture per week
ECTS Credit	8
Course Web Site	http://staff.emu.edu.tr/mustafababagil

Instructor(s)	Asst. Prof. Dr. Mustafa T. Babagil	Office Tel	+90 392 6302885	
instructor(s)	ASSC. PTOI. DI. Mustala 1. babagii	Office rei	+90 392 6302870	
E-mail	mustafa.babagil@emu.edu.tr	Office No	CT 123E	

Course Description

In academic fields, data analysis is often important to verify that any collected data is biased or not. There are simple mathematical techniques to be applied easily on the collected data before being used. On a set of collected quantitative data, some simple mathematical tests should be applied to decide if the set of data has a correlation or not. This could be done via mathematics or using application programs such as Excel or SPSS. This course also includes some forecasting techniques which can be used with any unbiased set of data. This course is important especially for those who need to prepare questionnaires in their research fields. It is important to test any set of data which will be used in a research done by computers and application programs. Also, to write conference or journal papers using the studies in the course projects and master graduation project, the importance of the course is obvious.

General Learning Outcomes

On successful completion of this course students should be able to:

- Handle data for meaningful analysis.
- Analyze data to find out correlation coefficient to comment on gathered data.
- Analyze to understand if the data is biased or unbiased.
- Test and understand hypothesis. (What is Null hypothesis or how to accept or reject an hypothesis)
- Learn about regression analysis. (Linear Regression, Parabolic Regression (only definitions), Exponential Regression(only definitions))
- Use the results in analysis to make predictions about future on the analyzed data. Simple forecasting
- Prepare their term projects according to ethical issues which will be specified clearly and neatly.

- The course has three hours of lectures in a week mainly held in the form of a seminar. Experimental data sets available to be analyzed to explain the related topics.
- There is one hour tutorial session per week which is organized for solving questions related to lectures and encourages students to voice their difficulties about solving these questions.

- Lecture notes and tutorials are posted via email and on the course web site.
- There are two written quizzes which are held one week before the midterm and final exam periods.
 - Quiz 1. (before first midterm)
 - Quiz 2. (before final exam)
 - The duration of the guizzes is 45 mins 90 mins.
- There is a written-practical midterm exam using computers to analyze given data sets.
- There is a final exam (completely practical on computer, by using either SPSS or Excel) based on the term project given to students and students should have enough practical background based on term project so that they could do the similar analysis during the exam with different data set given.
- There will be term project. An analysis will be done according to different data set given each student individually and after analyzing the given data set according to the topics learnt, a presentation will be expected to finalize the projects results.
- Class attendance is compulsory.
- The student is responsible to check the course web site regularly and view the latest announcements. Also mails are important to follow sent by instructor during the whole semester.

Text Book:

No Textbook. Lecture notes are prepared and will be refreshed every semester.

	Weekly Schedule / Summary of Topics
Week 1	Understanding data and how to use data as pairs.
Week 2	Correlation analysis of data (by using a software, Excel or SPSS)
Week 3	Correlation analysis of data (by using a software, Excel or SPSS), Use data to represent graphics (plot data pairs on coordinate axis)
Week 4	Analyzing correlation type by calculating a correlation coefficient (by using a software, Excel or SPSS), Table test to Correlation coefficient. t-test for Correlation Coefficient.
Week 5	t-test for Correlation Coefficient, Linear Regression via Excel, Understanding error in regression. Hypothesis Testing.
Week 6	Linear Regression via Excel, Residuals (errors), Using Regression Line (in Predictions, forecasting)
Week 7	Prediction Intervals, Total deviation, explained deviation, unexplained deviation. (via Excel or SPSS), ANOVA, Significance test
Week 8-9	Midterm Examinations
Week 10	Multiple regressions. Definitions and simple application. Time Series analysis and predictions on the data set.
Week 11	Preparing a proposal to a specific research to apply learnt aspects. (students will present their proposal)
Week 12	Presenting the collected and analyzed data. (students will present briefly)
Week 13	Documentation of the research done.(students should submit their documentation, as soft and hard copy)
Week 14	Preparing forecast on the research done and present the work done.
Week 15	Completing the research and prepare a conference paper. (Optional for each student. **)
Week 16-18	Final Examinations

Requirements

- Each student can have only one make-up exam.
- One who misses an exam should provide a medical report or a valid excuse within 3 days after the missed exam.

- The make-up exam is done at the end of the term and covers all the topics.
- No make-up exam is given for the quizzes or term project.
- Students who fail to attend the lectures regularly may be given NG grade.
- Once the grades are announced, the students have only one week to do objection about their grades.
- It is the students' responsibility to follow the announcement in the course web site and mails sent by instructor during the semester.

Background Requirements

- Students are expected to have a mathematical (basic mathematics) background at minimum undergraduate level for registering the course. No need to have a background related to SPSS.
- Students who lack an official proof (such as undergraduate transcript) of the required academic background must acquire a written permission from the course instructor for registering the course.

Method of Assessment								
Evaluation and Grading	2 Quizzes	Term Project	Home Work	Final Exam				
Percentage	20 %	%30	20 %	30 % **				

^{**} If the term project have an acceptance to a related conference then a student do not need to sit for the Final Exam.

	Grading Criteria *										
Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
90 -100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 – 39

^{*} Letter grades will be decided upon after calculating the averages at the end of the semester and distribution of the averages will play a significant role in the evaluation of the letter grades.

EASTERN MEDITERRANEAN UNIVERSITY SCHOOL OF COMPUTING AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COURSE POLICY SHEET

Course Title	Data Analysis with Software
Course Code	ITEC549
Туре	Full Time
Semester	Fall/Spring
Category	Area Elective
Workload	240 Hours
EMU Credit	(3,0,0) 3
Prerequisite	-
Language	English
Level	Graduate
Teaching Format	3 Hours Lecture per week
ECTS Credit	8
Course Web Site	http://staff.emu.edu.tr/mustafababagil

Instructor(s)	Asst. Prof. Dr. Mustafa T. Babagil	Office Tel	+90 392 6302885	
E-mail	mustafa.babagil@emu.edu.tr	Office No	CT 116	

Course Description

It is very important for the researchers to analyze the collected data. Furthermore, using a special software to generate output with the collected data and commenting on the output is very critical. This course is mainly designed to teach the fundamentals of using software for the collected data such as variable definitions, data input, data analysis, etc. In addition to this, fundamentals related to tests that may help the students to make their own comments on the output tables produced by the used software will be discussed. In order to make appropriate comments on outputs, one should learn statistics thoroughly.

General Learning Outcomes

On successful completion of this course students should be able to:

- Understand how data can be collected.
- Understand how to write collected data to the software in use.
- Understand fundamental knowledge about statistical tests available on the software.
- Learn descriptive statistics tools and their comments
- Use fundamental tools of the software to analyze data.
- Make comments on the output tables produced by software.

- The course has three hours of lectures in a week mainly held in the form of a seminar in a class.
- Lecture notes will be available on the course web site.
- There will be 2 quizzes during the semester and one presentation by each student which will be graded according to their performances on the research report and on the presentation related the report and there will be a final exam.
 - Quiz 1. (before first midterm period)
 - Quiz 2. (before final exam period)
 - The duration of the guizzes are 45 mins 60 mins.
- There is a final exam based on the lecture materials and the presentations done by students. It is important to be in class to keep notes during others presentations.

- There will be a presentation related to data analysis. Either a raw collected data or a predesigned and downloaded data could be used by each student (each student will have different data sets).
- Class attendance is compulsory.
- The student is responsible to check the course web site regularly and view the latest announcements. Also mails are important to follow sent by instructor during the whole semester.

Text Book:

No Textbook. Lecture notes are prepared and will be refreshed every semester as the materials dynamically may need to update according to the software used.

	Weekly Schedule / Summary of Topics				
Week 1	Understanding why data analysis is important in researches.				
Week 2	Data input to the special software (r, SPSS or Excel).				
Week 3	Defining Variables, and understand variable types that could be used				
Week 4	Statistical tests available in the S/W that is going to use – meaning of ANOVA test.				
Week 5	Understanding statistical tests. Parametric versus non-parametric tests.				
Week 6	Using Cross-tab and making comment by using percentages/ frequencies				
Week 7	Descriptive Statistics and comments				
Week 8-9	Midterm Examinations Period				
Week 10	Descriptive Statistics and comments				
Week 11	Definition of normality tests. Review examples on normality tests.				
Week 12	Review examples on normality tests.				
Week 13	Definitions of Homogeneity of variances. Some reviewed examples.				
Week 14	Review examples on Homogeneity of variances				
Week 15	General summary of the course.				
Week 16-18	Final Examinations Period				

Requirements

- Each student can have only one make-up exam.
- One who misses an exam should provide a medical report or a valid excuse within 3 days after the missed exam.
- The make-up exam is done at the end of the term and covers all the topics.
- No make-up exam is given for the quizzes or term project.
- Students who fail to attend the lectures regularly may be given NG grade.
- Once the grades are announced, the students have only one week to do objection about their grades.
- It is the students' responsibility to follow the announcement in the course web site and mails sent by instructor during the semester.

Background Requirements

No expected background requirement for the course. All students should be able to install the software in their personal computers (latest versions may be better.) Course is designed to benefit any student who deals with data analysis in research.

Method of Assessment							
Evaluation and Grading	2 Quizzes	Presentations	Presentations Class Attendance				
Percentage	20 %	%30	5 %	45 %			

	Grading Criteria *										
Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
90 -100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 – 39

^{*} Letter grades will be decided upon after calculating the averages at the end of the semester and distribution of the averages will play a significant role in the evaluation of the letter grades.

Course Title	Neural Computations			
Course Code	ITEC560			
Туре	Full Time			
Semester	Fall			
Category	Area Elective			
EMU Credit	(3,0,0) 3			
Prerequisite	-			
Language	English			
Level	Graduate			
Teaching Format	3 Hours Lecture			
ECTS Credit	8			
Workload of Stuent	240 Hours			
Course Web Site	https://lms.emu.edu.tr			

Instructor(s)	Prof. Dr. Ahmet Rizaner	Office Tel	+90 392 630 2480
E-mail	ahmet.rizaner@emu.edu.tr	Office No	CT112 / OAT115

Course Description

This course introduces the basic concepts and techniques of neural computation, and covers basic neural network architectures and learning algorithms, for applications in pattern recognition, image processing, and computer vision. This course also provides practical experience of designing and implementing a neural network for a real-world application.

General Learning Outcomes

On successful completion of this course students should be able to:

- Describe what a neural network is;
- Describe the relation between real brains and simple artificial neural network models;
- Discuss the main factors involved in achieving good learning and generalization performance in neural network systems;
- Identify the main implementation issues for common neural network systems;
- Evaluate the practical considerations in applying neural networks to real classification problems.

- The course has three hours of lectures a week.
- Only one make-up exam will be given for the missing exams.
- No make-up will be given for the project.
- Students are supposed to submit the assigned tasks on time.
- Course related materials will be posted on the course's learning platform (https://lms22-23fall.emu.edu.tr/course/view.php?id=2998).

Course Materials / Main References

Text Book:

Neural Networks and Learning Machines (3rd Edition), Simon S. Haykin, Upper Saddle River: Pearson Education, 2009, ISBN-13:978-0-13-147139-9.

Resource Books:

- 1. Fundamentals of Neural Networks: Architectures, Algorithms and Applications, Laurene V. Fausett, Prentice-Hall, Inc. Upper Saddle River, 1994, ISBN:0-13-334186-0.
- 2. The Essence of Neural Networks (Essence of Computing), Robert Callan, Prentice Hall PTR, 1994, ISBN:013908732X.

Lecture Notes:

Lecture notes are available on the course web site in PDF format.

	Weekly Schedule / Summary of Topics				
Week 1	Introduction				
Week 2	Perceptron				
Week 3	Multilayer Perceptron				
Week 4	Multilayer Perceptron				
Week 5	Associative Memory Neural Network				
Week 6	Iterative Associative Memory Neural Network				
Week 7	Radial Basis Function (RBF) Networks				
Week 8	Midterm Examinations				
Week 9	Midterm Examinations				
Week 10	Self-Organizing Future Maps				
Week 11	Self-Organizing Future Maps				
Week 12	Support Vector Machines				
Week 13	Presentations				
Week 14	Presentations				
Week 15	Final Examinations				
Week 16	Final Examinations				
Week 17	Final Examinations				

Requirements

- Some programming capability is essential. Some open-source neural network design software is available for download from various websites. Familiarity with MATLAB or Octave is also desirable.
- Some basic mathematics using matrix algebra will be used in this course. There will be some review of the necessary material.
- A small, focused project will be done over an approximately one-month period at the end of the semester. Students will form groups of 1, 2 or 3 by self-organization.
- The purpose of the project is to enable the students to get some hands-on experience in the design, implementation, and evaluation of neural network algorithms by applying them to real-world problems. The project will be an implementation / examination of some particular aspect of a neural network

- algorithm, or it will show the application of an algorithm on a particular problem.
- Projects will be presented to the class. The presentation will be approximately 10-15 minutes, with 5
 minutes left over for question-and-answer from the class. Slides made in a commonly used format (i.e.
 PowerPoint) can be used.
- Each student is expected to attend all the presentations.
- An electronic copy of the Project Presentation should also be submitted.
- A take home final exam will be given to the students at the end of the semester containing practical questions.
- You must download your Take Home Exam within the designated period.
- You should submit a 1-2 page proposal that describes the problem you would like to tackle, objective of
 the study, proposed algorithms, hardware/software tools and data that you plan to utilize, and
 evaluation strategies that you plan to use.
- You should get prior approval before starting your project.
- You are free to use any programming language or toolbox, but MATLAB or Octave is strongly recommended.
- You can write the codes yourself or use any code that is available in the public domain. In case you use somebody else's code, you are required to properly cite its source and know the details of the algorithms that the code implements.
- Each student can have only one make-up exam. One who misses an exam should provide a medical report within 3 days after the missed exam. The make-up exam will be organized at the end of the term after the finals and will cover all the topics. No make-up exam will be given for assignments.
- Once the grades are announced, the students have only one week to make objections about their grades.
- It is the students' responsibility to follow the announcement on the course web site.
- Students who do not pass the course and fail to attend the lectures regularly may be given NG grade.

	Method of Assessment				
Evaluation and Grading	Assignments Project* Final Exam				
Percentage	35%	25 %	40 %		

^{*}Proposal %5, Documentation/Report %10, Presentation 10%.

Grading Criteria

Letter grades will be decided upon after calculating the averages at the end of the semester. Distribution of the averages will play a significant role in the evaluation of the Letter Grades.

Project Details

A small, focused project will be done over an approximately one-month period at the end of the semester. Students will form groups of 1, 2 or 3 by self-organization. The purpose of the project is to enable the students to get some hands-on experience in the design, implementation, and evaluation of neural network algorithms by applying them to real-world problems. The project will be an implementation / examination of some aspect of a neural network algorithm, or it will show the application of an algorithm on a particular problem. You can select data sets from the list of data resources available.

You should submit a 1-2 page proposal that describes the problem you would like to tackle, objective of the study, proposed algorithms, hardware/software tools and data that you plan to utilize, and evaluation strategies that you plan to use. You should get prior approval before starting your project.

You are free to use any programming language or toolbox, but MATLAB or Octave is strongly recommended. You can write the codes yourself or use any code that is available in the public domain. In case you use somebody else's code, you are required to properly cite its source and know the details of the algorithms that the code

implements.

You should submit a readable and well-organized report that provides proper motivation for the task, proper citation and discussion of related literature, proper explanation of the details of the approach and implementation strategies, proper performance evaluation, and detailed discussion of the results. Highlight your contributions and conclusions. Also submit well-documented software with your report. The reports are expected to be 6-8 pages and must follow the IEEE Computer Society two-column format as described in their templates. Try to follow the format as closely as possible. It should be submitted as a pdf.

The Project Report should have the following format:

- Introduction: Describe your motivation for studying this topic, and any relevant background for this problem.
- Statement of Problem: a brief one-paragraph statement indicating what the problem is that you propose to implement or demonstrate. The contributions of the group members must be clearly stated in the report.
- Objectives: a brief statement of what you expect to achieve in relation to the Statement of Problem,
 e.g., a working algorithm, a demonstrated classification of data, model fitting, information discovery,
 etc.
- Technical Approach: outline of the methods for achieving the Objectives, including description of the data used.
- Results: substantiation and discussion of the results achieved, in comparison to the initial Objectives. Graphical presentations are frequently better than tables and sentences.
- Conclusions: Briefly summarize the important results and conclusions presented in the report. What are the most important points illustrated by your work? In what kind of problems, the proposed solutions can be used.
- Appendices: pertinent supporting material, the other supporting materials such as code; and optional items, e.g., data, extra plots etc. should be submitted separately.

Projects will be presented to the class. The presentation will be approximately 10-15 minutes, with 5 minutes left over for question-and-answer from the class. Slides made in a commonly used format (i.e. PowerPoint) can be used. Each student is expected to attend all the presentations. An electronic copy of the Project Presentation should also be submitted.

The presentation will be evaluated on the following items:

- Appearance of presentation.
- Organization of presentation.
- Description of project and stating the objectives.
- Relevant background material.
- Description of methodology.
- Description of implementation issues.
- Comments on the results.
- Duration of presentation.
- Individual performance.
- Response to questions / Question handing.

	Projects (25%)					
Evaluation and Grading	Proposal Documentation/Report Presentation					
Percentage	5%	10 %	10 %			

Grading Criteria *											
Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
90 - 100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 - 39

^{*} Letter grades will be decided after calculating the class average at the end of the semester and distribution of the grades will play a significant role in the evaluation.

Course Title	Mobile Ad Hoc Networks
Course Code	ITEC578
Туре	Full Time
Semester	Fall/Spring
Category	Area Elective
Workload	240 Hours
EMU Credit	(3,0,0) 3
Prerequisite	-
Language	English
Level	Graduate
Teaching Format	3 Hours Lecture
ECTS Credit	8
Course Web Site	http:// lms.emu.edu.tr

Instructor(s)	Asst. Prof. Dr. Emre Özen	Office Tel	+90 392 6301358
E-mail	emre.ozen@emu.edu.tr	Office No	CT102

Course Description

An ad hoc network is an infrastructure-less wireless network that can be formed spontaneously. These networks are mainly used by researchers, emergency services and military. A mobile ad-hoc network (MANET), is a type of ad hoc network that can change locations and configure itself spontaneously. On a MANET mobile devices communicate directly with one another. MAC layer protocols, routing protocols, multicast routing protocols, transport layer routing protocols, energy management in ad hoc wireless networks and recent developments in mobile ad-hoc networks will form the main concept of this course. Recent publications and researches about MANETs will be discussed throughout the semester

General Learning Outcomes

On successful completion of this course students should be able to:

- understand the recent protocols used in any layer of mobile ad-hoc networks.
- know about the hot topics that are suitable for making research
- know about the design issues of each protocol layer for mobile ad hoc networks
- make research about publications on any topic.

Teaching Methodology / Classroom Procedures

- The course has three hours of lectures in a week.
- Class attendance is compulsory.
- Only one make-up exam will be given for the missing exams.
- Make-up exam will be given after the final exams.
- No make-up will be given for the project.
- Students are supposed to submit the assigned tasks on time.
- Course related materials will be posted on the course web site.
- Work on individual projects: A research on a selected topic by the students including the coding for a simulation application using NS3 and presenting it at the end of the semester is a requirement.
- Final exam is conducted as a written exam that may contain short answer and writing essay questions.

Course Materials / Main References

Text Book:

Subir Kumar Sarkar, T. G. Basavaraju, C. Puttamadappa, Ad Hoc Mobile Wireless Networks, Auberbach Publications, Feb 2013, ISBN:978-1466514461

Lecture Notes:

-

	Weekly Schedule / Summary of Topics
Week 1	Fundamentals of Wireless Networks: What are Ad Hoc Networks?
Week 2	What is MAC Layer Protocol for Ad Hoc Wireless Networks
Week 3	Selected MAC Layer Protocols for Ad Hoc Wireless Networks
Week 4	What is Routing Protocol for Ad Hoc Wireless Networks?
Week 5	Selected Routing Protocols for Ad Hoc Wireless Networks
Week 6	What is Multicast Routing Protocol for Mobile Ad Hoc Networks?
Week 7-8	Selected Multicast Routing Protocols for Mobile Ad Hoc Networks
Week 9	What is Transport Protocol for Ad Hoc Networks?
Week 10	Selected Transport Protocols for Ad Hoc Networks
Week 11	Applications and Recent Developments in Ad Hoc Networks
Week 12	Applications and Recent Developments in Ad Hoc Networks
Week 13	Projects presentations by students
Week 14-15	Final Examinations

Rules and Obligations

- Each student can have only one make-up exam. One who misses an exam should provide a medical report within 3 days after the missed exam. The make-up exam will be organized at the end of the term after the finals and will cover all the topics. No make-up exam will be given for any assignment.
- Once the grades are announced, the students have only one week to do objection about their grades.
- It is the students' responsibility to follow the announcement in the course web site.
- Students who do not pass the course and fail to attend the lectures regularly may be given NG grade.

Background Requirement

- Students are expected to have a basic knowledge about network topologies, communication protocols like TCP/IP and OSI Model at minimum undergraduate level.
- Students who lack an official proof (such as undergraduate transcript) of the required academic background must acquire a written permission from the course instructor for registering the course.

	Method of Assessment				
Evaluation and Grading	Project Midterm Exam Final Exam				
Percentage	40 %	-	60 %		

Grading Criteria *											
Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
90 - 100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 - 39

^{*} Letter grades will be decided upon after calculating the averages at the end of the semester and distribution of the averages will play a significant role in the evaluation of the letter grades.

Course Title	Wireless Networking
Course Code	ITEC579
Туре	Full Time
Semester	Fall/Spring
Category	Area Elective
Workload	240 Hours
EMU Credit (Lec, Lab, Tut)	(3,0,0) 3
Prerequisite	-
Language	English
Level	Graduate
Teaching Format	3 Hours Lecture
ECTS Credit	8
Course Web Site	http://staff.emu.edu.tr/alihakanulusoy

Instructors(s)	Prof. Dr. Ali Hakan Ulusoy	Office Tel	2881
e-mail	alihakan.ulusoy@emu.edu.tr	Office No.	CT 108

Course Description

This course provides a hands-on guide to planning, designing, installing and configuring wireless LANs. The course offers in-depth coverage of wireless networks with extensive step-by-step coverage of IEEE 802.11b/a/g/n implementation, design, security, and troubleshooting.

General Learning Outcomes

On successful completion of this course students should:

- Describe how wireless technology is used in daily activities
- Describe the different IEEE WLAN standards
- Explain the principals of radio wave transmissions
- List and describe the wireless modulation schemes used in IEEE WLANs
- Explain the MAC procedures for joining, transmitting, and remaining connected to a WLAN
- Explain the steps for planning a wireless network
- Describe how to perform a site survey
- Explain the basic security protections for IEEE 802.11 WLANs
- List wireless security solutions
- Explain the procedures for maintaining a wireless network
- List troubleshooting techniques for solving RF transmission problems
- Describe the features of a wireless personal area network, a wireless metropolitan area network, and a wireless wide area network
- Explain the newest wireless networking technologies
- Conduct research about a wireless networking topic and present its findings

Teaching Methodology / Classroom Procedures

- Final exam is conducted as a written exam that may contain multiple choice questions, true/false questions, fill in the blanks questions and short answer questions.
- For the project / presentation, the students need to choose one paper from any source such as IEEE journals and/or conference proceedings. It is required that the students inform the instructor which

papers they have chosen for the presentation and seek their approval. Grades will be based on clarity of presentation, understanding of the key concepts, describing the research contained in the paper, and answering the questions from the audience. There will no teaming opportunities.

- Students are expected to carry out the assigned readings, and submit assignments.
- Students are encouraged to use internet to search for various related topics.
- Only one make-up exam will be given for the missing exams.
- Make-up exam will be given after the final exams.
- No make-up will be given for the project.
- Supplementary information for the course is available at http://staff.emu.edu.tr/alihakanulusoy. The Web site contains class notes, class announcements, the course syllabus, exam dates, and other information for the course.

Course Materials / Main References

Text Book:

Mark Ciampa, CWNA Guide to Wireless LANs, Second Edition, Course Technology Incorporated, 2006, ISBN 0-619-21579-8.

Resource Books:

- 1. Pejman Roshan, Jonathan Leary, 802.11 Wireless LAN Fundamentals, Cisco Press, 2003.
- 2. Mark Ciampa, Designing and Implementing Wireless LANs, Course Technology, 2001.
- 3. Theodore S. Rappaport, Wireless Communications: Principles and Practice, Prentice Hall, 2001.

Lecture Notes:

All course materials are also available online in Adobe PDF (Portable Document Format).

	Weekly Schedule / Summary of Topics
Week 1	It's a Wireless World: A Day in the Life of a Wireless User, A Look at Wireless Technologies, Wireless LAN Applications, Wireless Advantages and Disadvantages Wireless LAN Devices and Standards: WLAN Devices, Understanding Standards, Wireless Standards Organizations and Regulatory Agencies, Types of WLANs
Week 2	How Wireless Works: Radio Wave Transmission Principles, Radio Frequency Behavior and Measurement, Antennas
Week 3	IEEE 802.11 Physical Layer Standards: Wireless Modulation Schemes, IEEE 802.11 Physical Layer Standards
Week 4	IEEE 802.11 Medium Access Control and Network Layer Standards: IEEE WLAN Configurations, IEEE 802.11 MAC Layer Standards, WLAN Network Layer Standards
Week 5	Planning and Building a Wireless LAN: Planning for a Wireless Network, Designing the WLAN, Deploying a Wireless Network, Providing User Support Conducting a Site Survey: What Is a Site Survey?, Performing a Site Survey
Week 6	Wireless LAN Security and Vulnerabilities: Security Principles, Basic IEEE 802.11 Security Protections, Vulnerabilities of IEEE 802.11 Security, Other Wireless Attacks Implementing Wireless LAN Security: Wireless Security Solutions, Transitional Security Model, Personal Security Model, Enterprise Security Model
Week 7	Managing a Wireless LAN: Monitoring the Wireless Network, Maintaining the Wireless Network, Establishing a Wireless Security Policy
Week 7-8	Midterm Examinations
Week 9	Network Settings and Wireless LAN Troubleshooting: Wired Network Settings for Wireless Connections, Troubleshooting Wireless Networks
Week 10	Personal, Metropolitan, and Wide Area Wireless Networks: Wireless Personal Area Networks, Wireless Metropolitan Networks, Wireless Wide Area Networks, The Future of Wireless Networks
Week 11	Project Presentations

Week 12	Project Presentations
Week 13	Project Presentations
Week 14 - 15	Final Examinations

Rules and Obligations

- Each student can have only one make-up exam. One who misses an exam should provide a medical report within 3 days after the missed exam. The make-up exam will be organized at the end of the term after the finals and will cover all the topics. No make-up exam will be given for any quiz or assignment.
- Once the grades are announced, the students have only one week to do objection about their grades.
- It is the students' responsibility to follow the announcement in the course web site.
- Students who do not pass the course and fail to attend the lectures regularly may be given NG grade.

Background Requirements

- Students are expected to have a networking background at minimum undergraduate level for registering the course.
- Students who lack an official proof (such as undergraduate transcript) of the required academic background must acquire a written permission from the course instructor for registering the course.

Method of Assessment						
Evaluation and Grading Assignments Project / Presentation Final Exam						
Percentage 30 % 40						

Grading Criteria *									
A A- B+ B B- C+ C C- D+ D D- F								F	
90 - 100	90 - 100 85 - 89 80 - 84 75 - 79 70 - 74 65 - 69 60 - 64 56 - 59 53 - 55 50 - 52 40 - 49 0 - 39								0 - 39

^{*} Letter grades will be decided after calculating the class average at the end of the semester and distribution of the grades will play a significant role in the evaluation.

Course Title	Architecture and Hardware
Course Code	ITEC582
Туре	Full Time
Semester	Fall/Spring
Category	Area Elective
Workload	240 Hours
EMU Credit	(3,0,0) 3
Prerequisite	
Language	English
Level	Graduate
Teaching Format	3 Hours Lecture per week
ECTS Credit	8
Course Web Site	http://staff.emu.edu.tr/alperdoganalp/

Instructor(s)	Asst. Prof. Dr. Alper Doganalp	Office Tel	+90 392 6301600
E-mail	alper.doganalp@emu.edu.tr	Office No	CT205

Course Description

The course provides the study of the structure, characteristics and operation of modern day computer systems including a basic background on the computers evolution, its design process and its internal characteristics which includes processor components, control unit architecture, memory organization and system organization. The concept of reduced instruction set computers (RISC), superscalar processors and superpipelining is explained in detail. The benefits of parallel processing and multicore processors are considered.

General Learning Outcomes

On successful completion of this course students should be able to:

- Describe design principles for different instruction sets
- Discuss different register organizations
- Identify processor and register organizations
- Describe instrcution pipelining and identify pipeline hazards
- Discuss RISC/CISC processors
- Explain superscalar execeution and superpipeline approaches
- Identify symmetric multiprocessors and cache coherency protocols
- Discuss Cluster and NUMA organizations
- Describe multiple processor organizations
- Discuss multicore organizations

Teaching Methodology / Classroom Procedures

- The course has three hours of lectures in a week mainly held in the form of a seminar.
- There is no lab works or tutorials.
- There is one written midterm exam and one written final exam.
- The exams are conducted as a written exam that may contain multiple choice, fill in the blanks, short answer and writing essay questions.
- There is an individual term project.
 - You should find a recent conference/journal paper (published in the last 5 years) related to Computer Architecture and Hardware.
 - o The selected paper should be sent as an e-mail to husnu.bayramoglu@emu.edu.tr and wait for the

confirmation.

- o Once the topic is confirmed, you can start studying the topic and prepare a written report.
- o The printed report should be submitted before the announced deadline.
- Late submissions are not accepted.
- o Project grade is out of 25%.
- The report should be between 3500-4000 words with the format provided in the report template on the web site.
- Turnitin plagiarism test must be obtained before submission.
- The plagiarism test result should be less than 20%.
- No reports are accepted for consideration with higher plagiarism test result.
- An account will be created for you to make the plagiarism test through Turnitin.
- The work done for the project should be presented.
- o The duration of the presentation is about 15 minutes for each student.
- Presentation grade is out of 10%.
- Class attendance is compulsory.
- Lecture notes are available on the course web site.
- Course related materials will be posted on the course web site.

Course Materials / Main References

Text Book:

William Stallings, Computer Organization and Architecture-Designing for Performance, Ninth Edition, Pearson Higher Education, 2013. ISBN 13: 978-0-13-293633-0

	Weekly Schedule / Summary of Topics					
Week 1	ARM Data Types, Intel X86 Data Types					
Week 2	Variable Length Instructions: PDP-11 Instruction Format, Intel x86 Instruction Format					
Week 3	Register Organizations, Pipelining, Pipeline Hazards					
Week 4	Instruction Execution Policies, RISC/CISC Processors					
Week 5	Instruction Issue Policies					
Week 6	Superscalar Execution, Superpipelining					
Weeks 7-8	Midterm Examinations					
Weeks 9-10	Symmetric Multiprocessors, Cache Coherency Protocols, Cluster Computer Architectures					
Week 11	CC-NUMA (Cache Coherent Non-Uniform Memory Access) Organizations					
Week 12	Multicore Organizations					
Week 13	Presentations for Term Projects					
Week 14	Presentations for Term Projects					
Week 15	Presentations for Term Projects					
Weeks 16-18	Final Examinations					

Rules and Obligations

- Each student can have only one make-up exam. One who misses an exam should provide a medical report within 3 days after the missed exam.
- The make-up exam will be organized at the end of the term after the finals and will cover all the topics.
- No make-up will be given for any quiz, project, presentation or assignment.
- Once the grades are announced, the students have only one week to do objection about their grades.
- It is the students' responsibility to follow the announcement in the course web site.

Background Requirements

• Students are expected to have a computer hardware background at minimum undergraduate level for registering

the course.

• Students who lack an official proof (such as undergraduate transcript) of the required academic background must acquire a written permission from the course instructor for registering the course.

Method of Assessment						
Evaluation and Grading Term Project Midterm Exam Final Exam						
Percentage 35 % 30 % 35 %						

Grading Criteria *											
Α	A A- B+ B B- C+ C C- D+ D D- F							F			
90 - 100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 - 39

^{*} Letter grades will be decided upon after calculating the averages at the end of the semester and distribution of the averages will play a significant role in the evaluation of the letter grades.

Course Title	Risk Management for IT Projects
Course Code	ITEC584
Туре	Full Time
Semester	Fall/Spring
Category	Area Elective
Workload	240 Hours
EMU Credit (Lec, Lab, Tut)	(3,0,0) 3
Prerequisite	-
Language	English
Level	Graduate
Teaching Format	3 Hours Lecture
ECTS Credit	8
Course Web Site	https://staff.emu.edu.tr/mustafailkan/en/teaching/itec584

Instructors(s)	Prof. Dr. Mustafa Ilkan	Office Tel	1245
e-mail	Mustafa.ilkan@emu.edu.tr	Office No.	CT 204

Course Description

This course aims to provide a full understanding of the management roles, responsibilities and techniques needed to manage risks in IT projects.

General Learning Outcomes

On successful completion of this course students will have understanding of:

- Comprehensive knowledge regarding certain and uncertain risks that can occur in while dealing with IT projects.
- The course will equip students with skills to effectively identify, analyze, and mitigate such risk to successfully achieve their project goals.
- Advance knowledge of risk assessment, analysis, and reducing techniques.
- Risk management standards.

Teaching Methodology / Classroom Procedures

- Class quizzes will be taken once in a month. The quizzes are from each chapter and are organized every month from the covered topics.
- Students are required to present any chapter from the course either individually or in a group. The aim is to create a collaborative medium and create discussions.
- Students will also be assign a technical project related to any IT system (chosen by students) e.g. a static website, e-commerce/dynamic website, end-user system, online system etc
 - o Students are encouraged to use internet to search for more information.
 - Student must comply with risk management guidelines and standards and must use tools such as Microsoft Excel or Word to generate report and design necessary risk management tables and figures.
 - The purpose to be to analyze students understanding and knowledge gained from the course as well as their capability to utilize this knowledge in the professional world.
 - Project report will be based on professional risk management report formats used in organization.

- o Project must be submitted before the deadline.
- Final exam is conducted as a written exam that may contain multiple choice questions, true/false questions, fill in the blanks questions and essay questions.
- Make-up exam will be given after the final exams.
- Supplementary information for the course is available at http://staff.emu.edu.tr/mustafailkan/en/teaching/itec584. The Web site contains class notes, class announcements, the course syllabus, exam dates, and other information for the course.

Course Materials / Main References

Text Book:

Risk Management for IT Projects, Bennet P. Lientz, Lee Larssen

Resource Books:

Principles of Risk Management and Insurance, Eleventh Edition, George E. Rejda

Lecture Notes:

All course materials are also available online in Adobe PDF (Portable Document Format).

	Weekly Schedule / Summary of Topics
Week 1	Chapter 1 - INTRODUCTION
Week 2	Chapter 2 - Effective Issues Managements and Coordination
Week 2	Chapter 3 - Analysis and Measurements of Issues and Risk
Week 3	Chapter 4 - Teams
Week 3	Chapter 5 - The Work
Week 4	Chapter 6 - Business Unit
Week 4	Chapter 7 - Management
Week 5	Chapter 8 - Projects
Week 5	Chapter 9 - Resistance to Change
Week 6	Chapter 10 - Vendors, Consultants and Outsourcing
Week 6	Chapter 11- Headquarters
Week 7	Chapter 12-Technology
Week 7	Chapter 13- IT Strategic Plan
Week 8	Chapter 14- Analysis
Week 8	Chapter 15 - Software Packages
Week 9	Chapter 16 – Development
Week 9	Chapter 17 – Implementation
Week 10	Chapter 18 - Operations and Support
Week 11	Final Exam

Rules and Obligations

■ Each student can have only one make-up exam. One who misses an exam should provide a medical report within 3 days after the missed exam. The make-up exam will be organized at the end of the term after the finals and will cover all the topics. No make-up exam will be given for any quiz or assignment.

- Once the grades are announced, the students have only one week to do objection about their grades.
- It is the students' responsibility to follow the announcement in the course web site.
- Students who do not pass the course and fail to attend the lectures regularly may be given NG grade.

Background Requirements

- Students are expected to be enrolled in Master's program.
- Students who lack an official proof (such as undergraduate transcript) of the required academic background must acquire a written permission from the course instructor for registering the course.

Method of Assessment						
Evaluation and Grading Quiz Project / Presentation Final Exam						
Percentage 20 % 40% 40%						

Grading Criteria *											
Α	A-	B+	В	B-	C+	С	C-	D+	D	D-	F
90 - 100	85 - 89	80 - 84	75 - 79	70 - 74	65 - 69	60 - 64	56 - 59	53 - 55	50 - 52	40 - 49	0 - 39

^{*} Letter grades will be decided after calculating the class average at the end of the semester and distribution of the grades will play a significant role in the evaluation.

EASTERN MEDITERRANEAN UNIVERSITY SCHOOL OF COMPUTING AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COURSE POLICY SHEET

Course Title	Seminar		
Course Code	ITEC598		
Туре	Full Time		
Semester	Fall/Spring		
Category	Area Core		
EMU Credit	(0,0,0) 0		
Prerequisite	-		
Language	English		
Level	Graduate		
Teaching Format	Weekly meetings with supervisor		
ECTS Credit	4 What is ECTS? Why ECTS is needed? How does it work?		
Workload	120 Hours		

Course Description

The aim of the seminar course is to improve the student's skills in conducting research in an area of interest for the student, preferably a topic related to the thesis work, and reporting the research findings both verbally and in writing. In the application of the seminar course, the student, under the supervision of the thesis supervisor/course coordinator, specifies a topic, conducts a literature review, and prepares a written report and an oral presentation taking into consideration techniques for scientific research and research and publication ethics.

General Learning Outcomes

On successful completion of the project students should be able to:

- Summarize major themes in their area of specialization
- Identify areas where ethical issues may arise
- Understand the foundations of the chosen minor subject
- Have good skills in communications and proficiency in a language

Teaching Methodology

- Students have weekly meetings with their supervisor/course coordinator.
- Supervisors direct the student to prepare the necessary materials for successful completion of the seminar.
- All procedures and related forms are available at the Institute of Graduate Studies and Research web site.
 https://grad.emu.edu.tr/en
 https://grad.emu.edu.tr/en/academic-issues/forms

EASTERN MEDITERRANEAN UNIVERSITY SCHOOL OF COMPUTING AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COURSE POLICY SHEET

Course Title	Term Project		
Course Code	ITEC599		
Туре	Full Time		
Semester	Fall/Spring		
Category	Area Core		
EMU Credit	(0,0,0) 0		
Prerequisite	-		
Language	English		
Level	Graduate		
Teaching Format	Weekly meetings with supervisor		
ECTS Credit	10 What is ECTS? Why ECTS is needed? How does it work?		
Workload	300 Hours		
Course Web Site	https://sct.emu.edu.tr/en/itec599-term-project		

List of Supervisors					
Name and Surname	E-mail	Office No	Office Tel		
Prof. Dr. Ahmet Rizaner	ahmet.rizaner@emu.edu.tr	CT112	+90 392 6302480		
Prof. Dr. Ali Hakan Ulusoy	alihakan.ulusoy@emu.edu.tr	CT118	+90 392 6302881		
Assoc. Prof. Dr. Emre Özen	emre.ozen@emu.edu.tr	CT201	+90 392 6301447		
Assoc. Prof. Dr. Nazife Dimililer	nazife.dimililer@emu.edu.tr	CT200	+90 392 6301246		
Asst. Prof. Dr. Akile Oday	akile.oday@emu.edu.tr	CT114	+90 392 6301183		
Asst. Prof. Dr. Alper Doğanalp	alper.doganalp@emu.edu.tr	CT204	+90 392 6301600		
Asst. Prof. Dr. Cem Yağlı	cem.yagli@emu.edu.tr	CT109	+90 392 6301137		
Asst. Prof. Dr. Hasan Oylum	hasan.oylum@emu.edu.tr	CT118	+90 392 6301671		
Asst. Prof. Dr. Hüsnü Bayramoğlu	husnu.bayramoglu@emu.edu.tr	CT103	+90 392 6302894		
Asst. Prof. Dr. Mustafa T. Babagil	mustafa.babagil@emu.edu.tr	CT116	+90 392 6302885		
Asst. Prof. Dr. Nilgün Suphi	nilgun.suphi@emu.edu.tr	CT105	+90 392 6301134		

Guidance for Term Project

What is Term Project?

- 1. Term project should include identification of problem, formulation of hypothesis, search and review of literature, exposure to recent advances, data collection, critical analysis, interpretation of results and drawing conclusions.
- 2. Term project report should provide a literature review of the related area and explain the nature of the problem to be investigated. It should provide a clear summary of the project background, relevance and main contributions.

Supervisor Appointment and Project Proposal

1. Find a supervisor and fill the <u>Project Supervisor Co-Supervisor Appointment Form</u>. This form is used to represent the agreement between the supervisor and student to work together on ITEC599-Term Project. The deadline for submitting the form is determined by the last day for add/drop of the academic semester.

2. Agree on a project topic with your supervisor, fill the <u>Master's Project Proposal Form</u>, submit it to the Departmental Graduate Committee and wait for the approval of your project topic. The deadline for submitting the form is determined by the last day for add/drop of the academic semester. Once your topic is approved, you can start your term project studies.

Project Report

- 1. A project report must be written according to the report format.
- 2. The length of the report should be between 60 and 100 pages, excluding the cover page, approval page, abstract, dedication, acknowledgement, table of contents, list of tables, list of figures, list of abbreviations and appendix.
- 3. Turnitin plagiarism test result must be obtained before submitting the report to the jury members.
- 4. Test result must be less than 20% where each similarity index cannot exceed 5%.
- 5. Turnitin plagiarism test result page must be attached as the last page of the project report before submission.
- 6. The deadline for submitting the report is 2 weeks before the last day for submitting the letter grades of the academic semester.
- 7. 3 copies of the report must be submitted to 3 jury members, 1 week before the project defense date.
- 8. Reports submitted after the deadline will not be accepted. Students who submit their reports after the deadline receives PP (Project Progressing) letter grade. In this case, student should register ITEC599-Term Project in the next following semester to continue and complete the project.

Project Defense (Presentation)

- 1. Project defense is done against 3 jury members consists of Information Technology Master's Program academic staff.
- 2. Supervisor determines the names of the jury members and fill the <u>Jury Report for the Project Defense</u> <u>Form</u> accordingly.
- 3. Jury members take one of the following decisions after the defense of the student:
 - Approved: The Jury judges that the candidate has satisfactorily completed the Term Project work.
 - Approved upon alteration: The Jury judges that the candidate should resubmit the Term Project to the jury members with the required alterations, within not more than two weeks.
 - Rejected: The Jury judges that the candidate has not satisfactorily completed the Term Project work.

After Defense

- 1. If the project study is "approved" by the jury members or if the jury decision is "approved upon alteration" and student makes the necessary corrections on time study, then hard-covered project reports must be prepared by the student to collect the signatures for the approval page.
- 2. 3 copies of the hard-covered reports must be prepared where 1 copy will be submitted to the student, 1 copy to the supervisor and 1 copy goes to the departmental library.
- 3. Each copy of the hard-covered reports must contain a CD containing the soft copy of the report, attached to the last page of the report.
- 4. If the project study is rejected by the jury members or if the jury decision is "approved upon alteration" and student cannot make the necessary corrections on time study, then the project study must be repeated.

General Learning Outcomes

On successful completion of the project students should be able to:

- Summarize major themes in their area of specialization
- Identify areas where ethical issues may arise
- Act as expert and developer in their fields of speciality
- Understand the foundations of the chosen minor subject
- Have good skills in communications and proficiency in a language
- Select technologies, policies, and procedures to assure the confidentiality, integrity, and availability of information and IT systems

Teaching Methodology

- Students have weekly meetings with their supervisor.
- Supervisors direct the student to prepare the necessary materials for successful completion of the term project.
- All project related forms are available on the course web site.