The general Solow model

• Back to a closed economy.
• In the basic Solow model: no growth in GDP per worker in steady state. This contradicts the empirics for the Western world (stylized fact #5). In the general Solow model:
 • Total factor productivity, B_t, is assumed to grow at a constant, exogenous rate (the only change). This implies a steady state with balanced growth and a constant, positive growth rate of GDP per worker.
 • The source of long run growth in GDP per worker in this model is **exogenous** technological growth. Not deep, but:
 – it’s not trivial that the result is **balanced** growth in steady state,
 – reassuring for applications that the model is in accordance with a fundamental empirical regularity.
• Our focus is still:
 what creates economic progress and prosperity...
The micro world of the Solow model

... is the same as in the basic Solow model, e.g.:

- The same **object** (a closed economy).
- The same **goods** and **markets**. Once again, markets are competitive with real prices of $1, r_t$ and w_t, respectively. There is one type of output (one sector model).
- The same **agents**: consumers and firms (and government), essentially with the same behaviour, specifically: one representative profit maximising firm decides K_t^d and L_t^d given r_t and w_t.
- One difference: **the production function**. There is a possibility of technological progress:

$$Y_t = B_t K_t^\alpha L_t^{1-\alpha}, \quad 0 < \alpha < 1.$$

The full sequence (B_t) is exogenous and $B_t > 0$ for all t. Special case is $B_t = B$ (basic Solow model).
The production function with technological progress

\[Y_t = B_t K_t^{\alpha} L_t^{1-\alpha} \quad \text{with a given sequence, } (B_t) \leftrightarrow \]
\[Y_t = K_t^{\alpha} (A_t L_t)^{1-\alpha} \quad \text{with a given sequence, } (A_t), \quad A_t \equiv B_t^{1/(1-\alpha)}. \]

• With a Cobb-Douglas production function it makes no difference whether we describe technical progress by a sequence, \((B_t)\), for TFP or by the corresponding sequence, \((A_t)\), for labour augmenting productivity.

• In our case the latter is the most convenient. The exogenous sequence, \((A_t)\), is given by:

\[A_{t+1} = (1 + g) A_t, \quad g > -1 \]
\[\Rightarrow A_t = (1 + g)^t A_0, \quad g > -1 \]

• Technical progress comes as “manna from heaven” (it requires no input of production).
• Remember the definitions: \(y_t \equiv Y_t / L_t \) and \(k_t \equiv K_t / L_t \).

• Dividing by \(L_t \) on both sides of \(Y_t = K_t^\alpha (A_t L_t)^{1-\alpha} \) gives the per capita production function:

\[
y_t = k_t^\alpha A_t^{1-\alpha}.
\]

• From this follows:

\[
\ln y_t - \ln y_{t-1} = \alpha (\ln k_t - \ln k_{t-1}) + (1-\alpha)(\ln A_t - \ln A_{t-1}) \Leftrightarrow \\
g_t^y = \alpha g_t^k + (1-\alpha) g_t^A \equiv \alpha g_t^k + (1-\alpha) g.
\]

Growth in \(y_t \) can come from exactly two sources, and \(g_t^y \) is the weighted average of \(g_t^k \) and \(g \) with weights \(\alpha \) and \(1-\alpha \).

• If, as in balanced growth, \(k_t / y_t \) is constant, then \(g_t^y = g \)!
The complete Solow model

\[Y_t = K_t^\alpha (A_t L_t)^{1-\alpha} \]

\[r_t = \alpha K_t^{\alpha-1} (A_t L_t)^{1-\alpha} = \alpha \left(\frac{K_t}{A_t L_t} \right)^{\alpha-1} \]

\[w_t = (1-\alpha) K_t^\alpha L_t^{-\alpha} A_t^{1-\alpha} = (1-\alpha) \left(\frac{K_t}{A_t L_t} \right)^\alpha A_t \]

\[S_t = s Y_t \]

\[K_{t+1} - K_t = S_t - \delta K_t , \quad K_0 \text{ given} \]

\[L_{t+1} = (1+n) L_t , \quad L_0 \text{ given} \]

\[A_{t+1} = (1+g) A_t , \quad A_0 \text{ given} \]

- **Parameters:** \(\alpha, s, \delta, n, g \). Let \(g > 0 \).
- **State variables:** \(K_t, L_t \) and \(A_t \).
- **Full model?** Yes, given \(K_0, L_0 \) and \(A_0 \) the model determines the full sequences \((K_t), (L_t), (A_t), (Y_t), (r_t), (w_t), (S_t) \).
• **Note:**

\[r_t K_t = \alpha K_t^\alpha (A_t L_t)^{1-\alpha} = \alpha Y_t \]
\[w_t L_t = (1-\alpha) K_t^\alpha (A_t L_t)^{1-\alpha} = (1-\alpha) Y_t. \]

That is: capital’s share \(= \alpha \), labour’s share \(= 1-\alpha \), pure profits \(= 0 \). Our \(\alpha \) should still be around \(1/3 \).

• **Also note:** defining “effective labour input” as \(\tilde{L}_t = A_t L_t \):

\[\tilde{L}_{t+1} = (1+n)(1+g) \tilde{L}_t \equiv (1+\tilde{n}) \tilde{L}_t. \]

The model is mathematically equivalent to the basic Solow model with \(\tilde{L}_t \) taking the place of \(L_t \), and \(\tilde{n} \) taking the place of \(n \), and with \(B = 1 \)!

We could, in principle, take over the full analysis from the basic Solow model, but we will nevertheless be...
Analyzing the general Solow model

• If the model implies convergence to a steady state with balanced growth, then in steady state \(k_t \) and \(y_t \) must grow at the same constant rate (recall again that \(k_t / y_t \) is constant under balanced growth). Remember also:

\[
g_t^y = \alpha g_t^k + (1 - \alpha) g_t^A.
\]

Hence if \(g_t^y = g_t^k \), then \(g_t^y = g_t^k = g_t^A \). If there is convergence towards a steady state with balanced growth, then in this steady state \(k_t \) and \(y_t \) will both grow at the same rate as \(A_t \), and hence \(k_t / A_t \) and \(y_t / A_t \) will be constant.

• Furthermore: from the above mentioned equivalence to the basic Solow model, \(K_t / \tilde{L}_t = K_t / (A_t L_t) = k_t / A_t \) and \(Y_t / \tilde{L}_t = Y_t / (A_t L_t) = y_t / A_t \) converge towards constant steady state values.

• Each of the above observations suggests analyzing the model in terms of:
1. \(\tilde{k}_t \equiv \frac{k_t}{A_t} = \frac{K_t}{A_t L_t} \) and \(\tilde{y}_t \equiv \frac{y_t}{A_t} = \frac{Y_t}{A_t L_t} \).

2. From \(Y_t = K_t^\alpha (A_t L_t)^{1-\alpha} \) we get \(\tilde{y}_t = \tilde{k}_t^\alpha \).

3. From \(K_{t+1} - K_t = S_t - \delta K_t \) and \(S_t = sY_t \) we get
 \[
 K_{t+1} = sY_t + (1-\delta) K_t
 \]

4. Dividing by \(A_{t+1} L_{t+1} = (1+g)(1+n) A_t L_t \) on both sides gives
 \[
 \tilde{k}_{t+1} = \frac{1}{(1+n)(1+g)} \left(s\tilde{y}_t + (1-\delta) \tilde{k}_t \right).
 \]

5. Inserting \(\tilde{y}_t = \tilde{k}_t^\alpha \) gives the transition equation:
 \[
 \tilde{k}_{t+1} = \frac{1}{(1+n)(1+g)} \left(s\tilde{k}_t^\alpha + (1-\delta) \tilde{k}_t \right).
 \]

6. Subtracting \(\tilde{k}_t \) from both sides gives the Solow equation:
 \[
 \tilde{k}_{t+1} - \tilde{k}_t = \frac{1}{(1+n)(1+g)} \left(s\tilde{k}_t^\alpha - (n+g+\delta+ng) \tilde{k}_t \right).
 \]
Convergence to steady state: the transition diagram

- The transition equation is:
 \[
 \tilde{k}_{t+1} = \frac{1}{(1+n)(1+g)} \left(s\tilde{k}_t^\alpha + (1-\delta)\tilde{k}_t \right).
 \]

- It is everywhere increasing and passes through (0,0).

- The slope of the transition curve at any \(\tilde{k}_t \) is:
 \[
 \frac{d\tilde{k}_{t+1}}{d\tilde{k}_t} = \frac{s\alpha\tilde{k}_t^{\alpha-1} + (1-\delta)}{(1+n)(1+g)}.
 \]

- We observe: \(\lim_{\tilde{k}_t \to 0} \frac{d\tilde{k}_{t+1}}{d\tilde{k}_t} = \infty \). Furthermore, \(\lim_{\tilde{k}_t \to \infty} \frac{d\tilde{k}_{t+1}}{d\tilde{k}_t} < 1 \iff n + g + \delta + ng > 0 \). We assume that the latter very plausible stability condition is fulfilled.
• The transition equation must then look as follows:
• Convergence of \tilde{k}_t to the intersection point \tilde{k}^* follows from the diagram. Correspondingly: $\tilde{y}_t \to \tilde{y}^* = (\tilde{k}^*)^\alpha$.

Some first conclusions are:

• In the long run, $\tilde{k}_t \equiv k_t / A_t$ and $\tilde{y}_t = y_t / A_t$ converge to constant levels, \tilde{k}^* and \tilde{y}^*, respectively. These levels define steady state.

• In steady state, k_t and y_t both grow at the same rate as A_t, that is, at the rate g and the capital output ratio, $K_t / Y_t = k_t / y_t$, must be constant.
Steady state

• The Solow equation

\[\tilde{k}_{t+1} - \tilde{k}_t = \frac{1}{(1+n)(1+g)} \left(s\tilde{k}_t^\alpha - (n + g + \delta + ng) \tilde{k}_t \right) \]

together with \(\tilde{k}_{t+1} = \tilde{k}_t = \tilde{k}^* \) gives:

\[\tilde{k}^* = \left(\frac{s}{n + g + \delta + ng} \right)^{1-\alpha} \Rightarrow \tilde{y}^* = \left(\frac{s}{n + g + \delta + ng} \right)^{1-\alpha} . \]

• Using \(\tilde{k}_t \equiv k_t / A_t \) and \(\tilde{y}_t \equiv y_t / A_t \) we get the steady state growth paths:

\[k_t^* = A_t \left(\frac{s}{n + g + \delta + ng} \right)^{1-\alpha} \quad \text{and} \quad y_t^* = A_t \left(\frac{s}{n + g + \delta + ng} \right)^{1-\alpha} . \]
• Since \(c_t = (1-s) y_t \),
\[
c_t^* = A_t (1-s) \left(\frac{s}{n + g + \delta + ng} \right)^{\frac{\alpha}{1-\alpha}}.
\]

• It also easily follows from
\[
r_t = \alpha (\tilde{k}_t)^{\alpha-1} \quad \text{and} \quad w_t = (1-\alpha) A_t (\tilde{k}_t)^{\alpha}
\]
that
\[
r^* = \alpha \left(\frac{s}{n + g + \delta + ng} \right)^{-1} \quad \text{and} \quad w^*_t = A_t (1-\alpha) \left(\frac{s}{n + g + \delta + ng} \right)^{\frac{\alpha}{1-\alpha}}.
\]

• **There is balanced growth in steady state:** \(k_t, y_t \) and \(w_t \) grow at the same constant rate, \(g \), and \(r_t \) is constant.

• **There is positive growth in GDP per capita in steady state** (provided that \(g > 0 \)).
Structural policies for steady state

- Output per capita and consumption per capita in steady state are:
 \[y_t^* = A_0 (1 + g)^t \left(\frac{s}{n + g + \delta + ng} \right)^{\frac{\alpha}{1-\alpha}} \]
 \[c_t^* = A_0 (1 + g)^t (1 - s) \left(\frac{s}{n + g + \delta + ng} \right)^{\frac{\alpha}{1-\alpha}} \].

- Golden rule: the \(s \), that maximises the entire path, \(c_t^* \). Again: \(s^{**} = \alpha \).

- The elasticities of \(y_t^* \) wrt. \(s \) and \(n + g + \delta \) are again \(\alpha / (1 - a) \) and \(-\alpha / (1 - a) \), respectively.

- Policy implications from steady state are as in the basic Solow model: encourage savings and control population growth.

- **But** we have a new parameter, \(g \) (\(A_0 \) corresponds to \(B \)). We want a large \(g \), but it is not easy to derive policy conclusions wrt. technology enhancement from our model (\(g \) is exogenous).
Empirics for steady state

\[y_t^* = A_t \left(\frac{s}{n + g + \delta + ng} \right)^{\frac{\alpha}{1-\alpha}} \Rightarrow \]

\[\ln y_t^* = \ln A_t + \frac{\alpha}{1-\alpha} \left[\ln s - \ln (n + g + \delta + ng) \right]. \]

- Assume that all countries are in steady state in 2000!
- It’s hard to get good data for \(A_t \), so make the heroic assumption that \(A_t \) is the same for all countries in 2000.
- Set (plausibly) \(g + \delta \equiv 0.075 \).
- If \(y_{00}^i \) is GDP per worker in 2000 of country \(i \), the above equation suggests the following regression equation:

\[\ln y_{00}^i = \gamma_0 + \gamma_1 \left[\ln s^i - \ln \left(n^i 0.075 \right) \right], \]

with \(s^i \) and \(n^i \) measured appropriately (here as averages over 1960-2000), and where \(\gamma_1 = \alpha / (1 - \alpha) \).
An OLS estimation across 86 countries gives:

\[
\ln y_{00}^i = 8.812 + 1.47 \left(\ln s^i - \ln \left(n^i + 0.075 \right) \right), \quad \text{adj. } R^2 = 0.55
\]
• High significance! Large R^2! Even though we have assumed that A_{00} is the same in all countries!
• But always remember the problem of correlation vs. causality.
• Furthermore: the estimated value of γ is not in accordance with the theoretical (model-predicted) value of $1/2$. Or:

$$\frac{\alpha}{1 - \alpha} = 1.47 \Leftrightarrow \alpha = 0.60.$$

• The conclusion is mixed: the figure on the previous slide is impressive, but the figure’s line is much steeper than the model suggests.